Stable Diffusion

2024-04-25

The Third Monocular Depth Estimation Challenge

Authors: Jaime Spencer, Fabio Tosi, Matteo Poggi, Ripudaman Singh Arora, Chris Russell, Simon Hadfield, Richard Bowden, GuangYuan Zhou, ZhengXin Li, Qiang Rao, YiPing Bao, Xiao Liu, Dohyeong Kim, Jinseong Kim, Myunghyun Kim, Mykola Lavreniuk, Rui Li, Qing Mao, Jiang Wu, Yu Zhu, Jinqiu Sun, Yanning Zhang, Suraj Patni, Aradhye Agarwal, Chetan Arora, Pihai Sun, Kui Jiang, Gang Wu, Jian Liu, Xianming Liu, Junjun Jiang, Xidan Zhang, Jianing Wei, Fangjun Wang, Zhiming Tan, Jiabao Wang, Albert Luginov, Muhammad Shahzad, Seyed Hosseini, Aleksander Trajcevski, James H. Elder

Link: http://arxiv.org/abs/2404.16831v1open in new window

Abstract: This paper discusses the results of the third edition of the Monocular Depth Estimation Challenge (MDEC). The challenge focuses on zero-shot generalization to the challenging SYNS-Patches dataset, featuring complex scenes in natural and indoor settings. As with the previous edition, methods can use any form of supervision, i.e. supervised or self-supervised. The challenge received a total of 19 submissions outperforming the baseline on the test set: 10 among them submitted a report describing their approach, highlighting a diffused use of foundational models such as Depth Anything at the core of their method. The challenge winners drastically improved 3D F-Score performance, from 17.51% to 23.72%.

Make-it-Real: Unleashing Large Multimodal Model's Ability for Painting 3D Objects with Realistic Materials

Authors: Ye Fang, Zeyi Sun, Tong Wu, Jiaqi Wang, Ziwei Liu, Gordon Wetzstein, Dahua Lin

Link: http://arxiv.org/abs/2404.16829v1open in new window

Abstract: Physically realistic materials are pivotal in augmenting the realism of 3D assets across various applications and lighting conditions. However, existing 3D assets and generative models often lack authentic material properties. Manual assignment of materials using graphic software is a tedious and time-consuming task. In this paper, we exploit advancements in Multimodal Large Language Models (MLLMs), particularly GPT-4V, to present a novel approach, Make-it-Real: 1) We demonstrate that GPT-4V can effectively recognize and describe materials, allowing the construction of a detailed material library. 2) Utilizing a combination of visual cues and hierarchical text prompts, GPT-4V precisely identifies and aligns materials with the corresponding components of 3D objects. 3) The correctly matched materials are then meticulously applied as reference for the new SVBRDF material generation according to the original diffuse map, significantly enhancing their visual authenticity. Make-it-Real offers a streamlined integration into the 3D content creation workflow, showcasing its utility as an essential tool for developers of 3D assets.

ConsistentID: Portrait Generation with Multimodal Fine-Grained Identity Preserving

Authors: Jiehui Huang, Xiao Dong, Wenhui Song, Hanhui Li, Jun Zhou, Yuhao Cheng, Shutao Liao, Long Chen, Yiqiang Yan, Shengcai Liao, Xiaodan Liang

Link: http://arxiv.org/abs/2404.16771v1open in new window

Abstract: Diffusion-based technologies have made significant strides, particularly in personalized and customized facialgeneration. However, existing methods face challenges in achieving high-fidelity and detailed identity (ID)consistency, primarily due to insufficient fine-grained control over facial areas and the lack of a comprehensive strategy for ID preservation by fully considering intricate facial details and the overall face. To address these limitations, we introduce ConsistentID, an innovative method crafted for diverseidentity-preserving portrait generation under fine-grained multimodal facial prompts, utilizing only a single reference image. ConsistentID comprises two key components: a multimodal facial prompt generator that combines facial features, corresponding facial descriptions and the overall facial context to enhance precision in facial details, and an ID-preservation network optimized through the facial attention localization strategy, aimed at preserving ID consistency in facial regions. Together, these components significantly enhance the accuracy of ID preservation by introducing fine-grained multimodal ID information from facial regions. To facilitate training of ConsistentID, we present a fine-grained portrait dataset, FGID, with over 500,000 facial images, offering greater diversity and comprehensiveness than existing public facial datasets. % such as LAION-Face, CelebA, FFHQ, and SFHQ. Experimental results substantiate that our ConsistentID achieves exceptional precision and diversity in personalized facial generation, surpassing existing methods in the MyStyle dataset. Furthermore, while ConsistentID introduces more multimodal ID information, it maintains a fast inference speed during generation.

MuseumMaker: Continual Style Customization without Catastrophic Forgetting

Authors: Chenxi Liu, Gan Sun, Wenqi Liang, Jiahua Dong, Can Qin, Yang Cong

Link: http://arxiv.org/abs/2404.16612v1open in new window

Abstract: Pre-trained large text-to-image (T2I) models with an appropriate text prompt has attracted growing interests in customized images generation field. However, catastrophic forgetting issue make it hard to continually synthesize new user-provided styles while retaining the satisfying results amongst learned styles. In this paper, we propose MuseumMaker, a method that enables the synthesis of images by following a set of customized styles in a never-end manner, and gradually accumulate these creative artistic works as a Museum. When facing with a new customization style, we develop a style distillation loss module to transfer the style of the whole dataset into generation of images. It can minimize the learning biases caused by content of images, and address the catastrophic overfitting issue induced by few-shot images. To deal with catastrophic forgetting amongst past learned styles, we devise a dual regularization for shared-LoRA module to optimize the direction of model update, which could regularize the diffusion model from both weight and feature aspects, respectively. Meanwhile, a unique token embedding corresponding to this new style is learned by a task-wise token learning module, which could preserve historical knowledge from past styles with the limitation of LoRA parameter quantity. As any new user-provided style come, our MuseumMaker can capture the nuances of the new styles while maintaining the details of learned styles. Experimental results on diverse style datasets validate the effectiveness of our proposed MuseumMaker method, showcasing its robustness and versatility across various scenarios.

Conditional Distribution Modelling for Few-Shot Image Synthesis with Diffusion Models

Authors: Parul Gupta, Munawar Hayat, Abhinav Dhall, Thanh-Toan Do

Link: http://arxiv.org/abs/2404.16556v1open in new window

Abstract: Few-shot image synthesis entails generating diverse and realistic images of novel categories using only a few example images. While multiple recent efforts in this direction have achieved impressive results, the existing approaches are dependent only upon the few novel samples available at test time in order to generate new images, which restricts the diversity of the generated images. To overcome this limitation, we propose Conditional Distribution Modelling (CDM) -- a framework which effectively utilizes Diffusion models for few-shot image generation. By modelling the distribution of the latent space used to condition a Diffusion process, CDM leverages the learnt statistics of the training data to get a better approximation of the unseen class distribution, thereby removing the bias arising due to limited number of few shot samples. Simultaneously, we devise a novel inversion based optimization strategy that further improves the approximated unseen class distribution, and ensures the fidelity of the generated samples to the unseen class. The experimental results on four benchmark datasets demonstrate the effectiveness of our proposed CDM for few-shot generation.

TI2V-Zero: Zero-Shot Image Conditioning for Text-to-Video Diffusion Models

Authors: Haomiao Ni, Bernhard Egger, Suhas Lohit, Anoop Cherian, Ye Wang, Toshiaki Koike-Akino, Sharon X. Huang, Tim K. Marks

Link: http://arxiv.org/abs/2404.16306v1open in new window

Abstract: Text-conditioned image-to-video generation (TI2V) aims to synthesize a realistic video starting from a given image (e.g., a woman's photo) and a text description (e.g., "a woman is drinking water."). Existing TI2V frameworks often require costly training on video-text datasets and specific model designs for text and image conditioning. In this paper, we propose TI2V-Zero, a zero-shot, tuning-free method that empowers a pretrained text-to-video (T2V) diffusion model to be conditioned on a provided image, enabling TI2V generation without any optimization, fine-tuning, or introducing external modules. Our approach leverages a pretrained T2V diffusion foundation model as the generative prior. To guide video generation with the additional image input, we propose a "repeat-and-slide" strategy that modulates the reverse denoising process, allowing the frozen diffusion model to synthesize a video frame-by-frame starting from the provided image. To ensure temporal continuity, we employ a DDPM inversion strategy to initialize Gaussian noise for each newly synthesized frame and a resampling technique to help preserve visual details. We conduct comprehensive experiments on both domain-specific and open-domain datasets, where TI2V-Zero consistently outperforms a recent open-domain TI2V model. Furthermore, we show that TI2V-Zero can seamlessly extend to other tasks such as video infilling and prediction when provided with more images. Its autoregressive design also supports long video generation.

2024-04-23

ID-Animator: Zero-Shot Identity-Preserving Human Video Generation

Authors: Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, Man Zhou, Jie Zhang

Link: http://arxiv.org/abs/2404.15275v1open in new window

Abstract: Generating high fidelity human video with specified identities has attracted significant attention in the content generation community. However, existing techniques struggle to strike a balance between training efficiency and identity preservation, either requiring tedious case-by-case finetuning or usually missing the identity details in video generation process. In this study, we present ID-Animator, a zero-shot human-video generation approach that can perform personalized video generation given single reference facial image without further training. ID-Animator inherits existing diffusion-based video generation backbones with a face adapter to encode the ID-relevant embeddings from learnable facial latent queries. To facilitate the extraction of identity information in video generation, we introduce an ID-oriented dataset construction pipeline, which incorporates decoupled human attribute and action captioning technique from a constructed facial image pool. Based on this pipeline, a random face reference training method is further devised to precisely capture the ID-relevant embeddings from reference images, thus improving the fidelity and generalization capacity of our model for ID-specific video generation. Extensive experiments demonstrate the superiority of ID-Animator to generate personalized human videos over previous models. Moreover, our method is highly compatible with popular pre-trained T2V models like animatediff and various community backbone models, showing high extendability in real-world applications for video generation where identity preservation is highly desired. Our codes and checkpoints will be released at https://github.com/ID-Animator/ID-Animator.

From Parts to Whole: A Unified Reference Framework for Controllable Human Image Generation

Authors: Zehuan Huang, Hongxing Fan, Lipeng Wang, Lu Sheng

Link: http://arxiv.org/abs/2404.15267v1open in new window

Abstract: Recent advancements in controllable human image generation have led to zero-shot generation using structural signals (e.g., pose, depth) or facial appearance. Yet, generating human images conditioned on multiple parts of human appearance remains challenging. Addressing this, we introduce Parts2Whole, a novel framework designed for generating customized portraits from multiple reference images, including pose images and various aspects of human appearance. To achieve this, we first develop a semantic-aware appearance encoder to retain details of different human parts, which processes each image based on its textual label to a series of multi-scale feature maps rather than one image token, preserving the image dimension. Second, our framework supports multi-image conditioned generation through a shared self-attention mechanism that operates across reference and target features during the diffusion process. We enhance the vanilla attention mechanism by incorporating mask information from the reference human images, allowing for the precise selection of any part. Extensive experiments demonstrate the superiority of our approach over existing alternatives, offering advanced capabilities for multi-part controllable human image customization. See our project page at https://huanngzh.github.io/Parts2Whole/.

CutDiffusion: A Simple, Fast, Cheap, and Strong Diffusion Extrapolation Method

Authors: Mingbao Lin, Zhihang Lin, Wengyi Zhan, Liujuan Cao, Rongrong Ji

Link: http://arxiv.org/abs/2404.15141v1open in new window

Abstract: Transforming large pre-trained low-resolution diffusion models to cater to higher-resolution demands, i.e., diffusion extrapolation, significantly improves diffusion adaptability. We propose tuning-free CutDiffusion, aimed at simplifying and accelerating the diffusion extrapolation process, making it more affordable and improving performance. CutDiffusion abides by the existing patch-wise extrapolation but cuts a standard patch diffusion process into an initial phase focused on comprehensive structure denoising and a subsequent phase dedicated to specific detail refinement. Comprehensive experiments highlight the numerous almighty advantages of CutDiffusion: (1) simple method construction that enables a concise higher-resolution diffusion process without third-party engagement; (2) fast inference speed achieved through a single-step higher-resolution diffusion process, and fewer inference patches required; (3) cheap GPU cost resulting from patch-wise inference and fewer patches during the comprehensive structure denoising; (4) strong generation performance, stemming from the emphasis on specific detail refinement.

Taming Diffusion Probabilistic Models for Character Control

Authors: Rui Chen, Mingyi Shi, Shaoli Huang, Ping Tan, Taku Komura, Xuelin Chen

Link: http://arxiv.org/abs/2404.15121v1open in new window

Abstract: We present a novel character control framework that effectively utilizes motion diffusion probabilistic models to generate high-quality and diverse character animations, responding in real-time to a variety of dynamic user-supplied control signals. At the heart of our method lies a transformer-based Conditional Autoregressive Motion Diffusion Model (CAMDM), which takes as input the character's historical motion and can generate a range of diverse potential future motions conditioned on high-level, coarse user control. To meet the demands for diversity, controllability, and computational efficiency required by a real-time controller, we incorporate several key algorithmic designs. These include separate condition tokenization, classifier-free guidance on past motion, and heuristic future trajectory extension, all designed to address the challenges associated with taming motion diffusion probabilistic models for character control. As a result, our work represents the first model that enables real-time generation of high-quality, diverse character animations based on user interactive control, supporting animating the character in multiple styles with a single unified model. We evaluate our method on a diverse set of locomotion skills, demonstrating the merits of our method over existing character controllers. Project page and source codes: https://aiganimation.github.io/CAMDM/

OccGen: Generative Multi-modal 3D Occupancy Prediction for Autonomous Driving

Authors: Guoqing Wang, Zhongdao Wang, Pin Tang, Jilai Zheng, Xiangxuan Ren, Bailan Feng, Chao Ma

Link: http://arxiv.org/abs/2404.15014v1open in new window

Abstract: Existing solutions for 3D semantic occupancy prediction typically treat the task as a one-shot 3D voxel-wise segmentation perception problem. These discriminative methods focus on learning the mapping between the inputs and occupancy map in a single step, lacking the ability to gradually refine the occupancy map and the reasonable scene imaginative capacity to complete the local regions somewhere. In this paper, we introduce OccGen, a simple yet powerful generative perception model for the task of 3D semantic occupancy prediction. OccGen adopts a ''noise-to-occupancy'' generative paradigm, progressively inferring and refining the occupancy map by predicting and eliminating noise originating from a random Gaussian distribution. OccGen consists of two main components: a conditional encoder that is capable of processing multi-modal inputs, and a progressive refinement decoder that applies diffusion denoising using the multi-modal features as conditions. A key insight of this generative pipeline is that the diffusion denoising process is naturally able to model the coarse-to-fine refinement of the dense 3D occupancy map, therefore producing more detailed predictions. Extensive experiments on several occupancy benchmarks demonstrate the effectiveness of the proposed method compared to the state-of-the-art methods. For instance, OccGen relatively enhances the mIoU by 9.5%, 6.3%, and 13.3% on nuScenes-Occupancy dataset under the muli-modal, LiDAR-only, and camera-only settings, respectively. Moreover, as a generative perception model, OccGen exhibits desirable properties that discriminative models cannot achieve, such as providing uncertainty estimates alongside its multiple-step predictions.

Music Style Transfer With Diffusion Model

Authors: Hong Huang, Yuyi Wang, Luyao Li, Jun Lin

Link: http://arxiv.org/abs/2404.14771v1open in new window

Abstract: Previous studies on music style transfer have mainly focused on one-to-one style conversion, which is relatively limited. When considering the conversion between multiple styles, previous methods required designing multiple modes to disentangle the complex style of the music, resulting in large computational costs and slow audio generation. The existing music style transfer methods generate spectrograms with artifacts, leading to significant noise in the generated audio. To address these issues, this study proposes a music style transfer framework based on diffusion models (DM) and uses spectrogram-based methods to achieve multi-to-multi music style transfer. The GuideDiff method is used to restore spectrograms to high-fidelity audio, accelerating audio generation speed and reducing noise in the generated audio. Experimental results show that our model has good performance in multi-mode music style transfer compared to the baseline and can generate high-quality audio in real-time on consumer-grade GPUs.

Enhancing Prompt Following with Visual Control Through Training-Free Mask-Guided Diffusion

Authors: Hongyu Chen, Yiqi Gao, Min Zhou, Peng Wang, Xubin Li, Tiezheng Ge, Bo Zheng

Link: http://arxiv.org/abs/2404.14768v1open in new window

Abstract: Recently, integrating visual controls into text-to-image~(T2I) models, such as ControlNet method, has received significant attention for finer control capabilities. While various training-free methods make efforts to enhance prompt following in T2I models, the issue with visual control is still rarely studied, especially in the scenario that visual controls are misaligned with text prompts. In this paper, we address the challenge of ``Prompt Following With Visual Control" and propose a training-free approach named Mask-guided Prompt Following (MGPF). Object masks are introduced to distinct aligned and misaligned parts of visual controls and prompts. Meanwhile, a network, dubbed as Masked ControlNet, is designed to utilize these object masks for object generation in the misaligned visual control region. Further, to improve attribute matching, a simple yet efficient loss is designed to align the attention maps of attributes with object regions constrained by ControlNet and object masks. The efficacy and superiority of MGPF are validated through comprehensive quantitative and qualitative experiments.

2024-04-18

G-HOP: Generative Hand-Object Prior for Interaction Reconstruction and Grasp Synthesis

Authors: Yufei Ye, Abhinav Gupta, Kris Kitani, Shubham Tulsiani

Link: http://arxiv.org/abs/2404.12383v1open in new window

Abstract: We propose G-HOP, a denoising diffusion based generative prior for hand-object interactions that allows modeling both the 3D object and a human hand, conditioned on the object category. To learn a 3D spatial diffusion model that can capture this joint distribution, we represent the human hand via a skeletal distance field to obtain a representation aligned with the (latent) signed distance field for the object. We show that this hand-object prior can then serve as generic guidance to facilitate other tasks like reconstruction from interaction clip and human grasp synthesis. We believe that our model, trained by aggregating seven diverse real-world interaction datasets spanning across 155 categories, represents a first approach that allows jointly generating both hand and object. Our empirical evaluations demonstrate the benefit of this joint prior in video-based reconstruction and human grasp synthesis, outperforming current task-specific baselines. Project website: https://judyye.github.io/ghop-www

Lazy Diffusion Transformer for Interactive Image Editing

Authors: Yotam Nitzan, Zongze Wu, Richard Zhang, Eli Shechtman, Daniel Cohen-Or, Taesung Park, Michaël Gharbi

Link: http://arxiv.org/abs/2404.12382v1open in new window

Abstract: We introduce a novel diffusion transformer, LazyDiffusion, that generates partial image updates efficiently. Our approach targets interactive image editing applications in which, starting from a blank canvas or an image, a user specifies a sequence of localized image modifications using binary masks and text prompts. Our generator operates in two phases. First, a context encoder processes the current canvas and user mask to produce a compact global context tailored to the region to generate. Second, conditioned on this context, a diffusion-based transformer decoder synthesizes the masked pixels in a "lazy" fashion, i.e., it only generates the masked region. This contrasts with previous works that either regenerate the full canvas, wasting time and computation, or confine processing to a tight rectangular crop around the mask, ignoring the global image context altogether. Our decoder's runtime scales with the mask size, which is typically small, while our encoder introduces negligible overhead. We demonstrate that our approach is competitive with state-of-the-art inpainting methods in terms of quality and fidelity while providing a 10x speedup for typical user interactions, where the editing mask represents 10% of the image.

AniClipart: Clipart Animation with Text-to-Video Priors

Authors: Ronghuan Wu, Wanchao Su, Kede Ma, Jing Liao

Link: http://arxiv.org/abs/2404.12347v1open in new window

Abstract: Clipart, a pre-made graphic art form, offers a convenient and efficient way of illustrating visual content. Traditional workflows to convert static clipart images into motion sequences are laborious and time-consuming, involving numerous intricate steps like rigging, key animation and in-betweening. Recent advancements in text-to-video generation hold great potential in resolving this problem. Nevertheless, direct application of text-to-video generation models often struggles to retain the visual identity of clipart images or generate cartoon-style motions, resulting in unsatisfactory animation outcomes. In this paper, we introduce AniClipart, a system that transforms static clipart images into high-quality motion sequences guided by text-to-video priors. To generate cartoon-style and smooth motion, we first define B'{e}zier curves over keypoints of the clipart image as a form of motion regularization. We then align the motion trajectories of the keypoints with the provided text prompt by optimizing the Video Score Distillation Sampling (VSDS) loss, which encodes adequate knowledge of natural motion within a pretrained text-to-video diffusion model. With a differentiable As-Rigid-As-Possible shape deformation algorithm, our method can be end-to-end optimized while maintaining deformation rigidity. Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models, in terms of text-video alignment, visual identity preservation, and motion consistency. Furthermore, we showcase the versatility of AniClipart by adapting it to generate a broader array of animation formats, such as layered animation, which allows topological changes.

Customizing Text-to-Image Diffusion with Camera Viewpoint Control

Authors: Nupur Kumari, Grace Su, Richard Zhang, Taesung Park, Eli Shechtman, Jun-Yan Zhu

Link: http://arxiv.org/abs/2404.12333v1open in new window

Abstract: Model customization introduces new concepts to existing text-to-image models, enabling the generation of the new concept in novel contexts. However, such methods lack accurate camera view control w.r.t the object, and users must resort to prompt engineering (e.g., adding "top-view") to achieve coarse view control. In this work, we introduce a new task -- enabling explicit control of camera viewpoint for model customization. This allows us to modify object properties amongst various background scenes via text prompts, all while incorporating the target camera pose as additional control. This new task presents significant challenges in merging a 3D representation from the multi-view images of the new concept with a general, 2D text-to-image model. To bridge this gap, we propose to condition the 2D diffusion process on rendered, view-dependent features of the new object. During training, we jointly adapt the 2D diffusion modules and 3D feature predictions to reconstruct the object's appearance and geometry while reducing overfitting to the input multi-view images. Our method outperforms existing image editing and model personalization baselines in preserving the custom object's identity while following the input text prompt and the object's camera pose.

StyleBooth: Image Style Editing with Multimodal Instruction

Authors: Zhen Han, Chaojie Mao, Zeyinzi Jiang, Yulin Pan, Jingfeng Zhang

Link: http://arxiv.org/abs/2404.12154v1open in new window

Abstract: Given an original image, image editing aims to generate an image that align with the provided instruction. The challenges are to accept multimodal inputs as instructions and a scarcity of high-quality training data, including crucial triplets of source/target image pairs and multimodal (text and image) instructions. In this paper, we focus on image style editing and present StyleBooth, a method that proposes a comprehensive framework for image editing and a feasible strategy for building a high-quality style editing dataset. We integrate encoded textual instruction and image exemplar as a unified condition for diffusion model, enabling the editing of original image following multimodal instructions. Furthermore, by iterative style-destyle tuning and editing and usability filtering, the StyleBooth dataset provides content-consistent stylized/plain image pairs in various categories of styles. To show the flexibility of StyleBooth, we conduct experiments on diverse tasks, such as text-based style editing, exemplar-based style editing and compositional style editing. The results demonstrate that the quality and variety of training data significantly enhance the ability to preserve content and improve the overall quality of generated images in editing tasks. Project page can be found at https://ali-vilab.github.io/stylebooth-page/.

Sketch-guided Image Inpainting with Partial Discrete Diffusion Process

Authors: Nakul Sharma, Aditay Tripathi, Anirban Chakraborty, Anand Mishra

Link: http://arxiv.org/abs/2404.11949v1open in new window

Abstract: In this work, we study the task of sketch-guided image inpainting. Unlike the well-explored natural language-guided image inpainting, which excels in capturing semantic details, the relatively less-studied sketch-guided inpainting offers greater user control in specifying the object's shape and pose to be inpainted. As one of the early solutions to this task, we introduce a novel partial discrete diffusion process (PDDP). The forward pass of the PDDP corrupts the masked regions of the image and the backward pass reconstructs these masked regions conditioned on hand-drawn sketches using our proposed sketch-guided bi-directional transformer. The proposed novel transformer module accepts two inputs -- the image containing the masked region to be inpainted and the query sketch to model the reverse diffusion process. This strategy effectively addresses the domain gap between sketches and natural images, thereby, enhancing the quality of inpainting results. In the absence of a large-scale dataset specific to this task, we synthesize a dataset from the MS-COCO to train and extensively evaluate our proposed framework against various competent approaches in the literature. The qualitative and quantitative results and user studies establish that the proposed method inpaints realistic objects that fit the context in terms of the visual appearance of the provided sketch. To aid further research, we have made our code publicly available at https://github.com/vl2g/Sketch-Inpainting .

EdgeFusion: On-Device Text-to-Image Generation

Authors: Thibault Castells, Hyoung-Kyu Song, Tairen Piao, Shinkook Choi, Bo-Kyeong Kim, Hanyoung Yim, Changgwun Lee, Jae Gon Kim, Tae-Ho Kim

Link: http://arxiv.org/abs/2404.11925v1open in new window

Abstract: The intensive computational burden of Stable Diffusion (SD) for text-to-image generation poses a significant hurdle for its practical application. To tackle this challenge, recent research focuses on methods to reduce sampling steps, such as Latent Consistency Model (LCM), and on employing architectural optimizations, including pruning and knowledge distillation. Diverging from existing approaches, we uniquely start with a compact SD variant, BK-SDM. We observe that directly applying LCM to BK-SDM with commonly used crawled datasets yields unsatisfactory results. It leads us to develop two strategies: (1) leveraging high-quality image-text pairs from leading generative models and (2) designing an advanced distillation process tailored for LCM. Through our thorough exploration of quantization, profiling, and on-device deployment, we achieve rapid generation of photo-realistic, text-aligned images in just two steps, with latency under one second on resource-limited edge devices.

FreeDiff: Progressive Frequency Truncation for Image Editing with Diffusion Models

Authors: Wei Wu, Qingnan Fan, Shuai Qin, Hong Gu, Ruoyu Zhao, Antoni B. Chan

Link: http://arxiv.org/abs/2404.11895v1open in new window

Abstract: Precise image editing with text-to-image models has attracted increasing interest due to their remarkable generative capabilities and user-friendly nature. However, such attempts face the pivotal challenge of misalignment between the intended precise editing target regions and the broader area impacted by the guidance in practice. Despite excellent methods leveraging attention mechanisms that have been developed to refine the editing guidance, these approaches necessitate modifications through complex network architecture and are limited to specific editing tasks. In this work, we re-examine the diffusion process and misalignment problem from a frequency perspective, revealing that, due to the power law of natural images and the decaying noise schedule, the denoising network primarily recovers low-frequency image components during the earlier timesteps and thus brings excessive low-frequency signals for editing. Leveraging this insight, we introduce a novel fine-tuning free approach that employs progressive $\textbf{Fre}$qu$\textbf{e}$ncy truncation to refine the guidance of $\textbf{Diff}$usion models for universal editing tasks ($\textbf{FreeDiff}$). Our method achieves comparable results with state-of-the-art methods across a variety of editing tasks and on a diverse set of images, highlighting its potential as a versatile tool in image editing applications.

2024-04-17

Dynamic Typography: Bringing Text to Life via Video Diffusion Prior

Authors: Zichen Liu, Yihao Meng, Hao Ouyang, Yue Yu, Bolin Zhao, Daniel Cohen-Or, Huamin Qu

Link: http://arxiv.org/abs/2404.11614v2open in new window

Abstract: Text animation serves as an expressive medium, transforming static communication into dynamic experiences by infusing words with motion to evoke emotions, emphasize meanings, and construct compelling narratives. Crafting animations that are semantically aware poses significant challenges, demanding expertise in graphic design and animation. We present an automated text animation scheme, termed "Dynamic Typography", which combines two challenging tasks. It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts. Our technique harnesses vector graphics representations and an end-to-end optimization-based framework. This framework employs neural displacement fields to convert letters into base shapes and applies per-frame motion, encouraging coherence with the intended textual concept. Shape preservation techniques and perceptual loss regularization are employed to maintain legibility and structural integrity throughout the animation process. We demonstrate the generalizability of our approach across various text-to-video models and highlight the superiority of our end-to-end methodology over baseline methods, which might comprise separate tasks. Through quantitative and qualitative evaluations, we demonstrate the effectiveness of our framework in generating coherent text animations that faithfully interpret user prompts while maintaining readability. Our code is available at: https://animate-your-word.github.io/demo/.

InFusion: Inpainting 3D Gaussians via Learning Depth Completion from Diffusion Prior

Authors: Zhiheng Liu, Hao Ouyang, Qiuyu Wang, Ka Leong Cheng, Jie Xiao, Kai Zhu, Nan Xue, Yu Liu, Yujun Shen, Yang Cao

Link: http://arxiv.org/abs/2404.11613v1open in new window

Abstract: 3D Gaussians have recently emerged as an efficient representation for novel view synthesis. This work studies its editability with a particular focus on the inpainting task, which aims to supplement an incomplete set of 3D Gaussians with additional points for visually harmonious rendering. Compared to 2D inpainting, the crux of inpainting 3D Gaussians is to figure out the rendering-relevant properties of the introduced points, whose optimization largely benefits from their initial 3D positions. To this end, we propose to guide the point initialization with an image-conditioned depth completion model, which learns to directly restore the depth map based on the observed image. Such a design allows our model to fill in depth values at an aligned scale with the original depth, and also to harness strong generalizability from largescale diffusion prior. Thanks to the more accurate depth completion, our approach, dubbed InFusion, surpasses existing alternatives with sufficiently better fidelity and efficiency under various complex scenarios. We further demonstrate the effectiveness of InFusion with several practical applications, such as inpainting with user-specific texture or with novel object insertion.

IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering Under Unknown Illumination

Authors: Xi Chen, Sida Peng, Dongchen Yang, Yuan Liu, Bowen Pan, Chengfei Lv, Xiaowei Zhou

Link: http://arxiv.org/abs/2404.11593v1open in new window

Abstract: This paper aims to recover object materials from posed images captured under an unknown static lighting condition. Recent methods solve this task by optimizing material parameters through differentiable physically based rendering. However, due to the coupling between object geometry, materials, and environment lighting, there is inherent ambiguity during the inverse rendering process, preventing previous methods from obtaining accurate results. To overcome this ill-posed problem, our key idea is to learn the material prior with a generative model for regularizing the optimization process. We observe that the general rendering equation can be split into diffuse and specular shading terms, and thus formulate the material prior as diffusion models of albedo and specular. Thanks to this design, our model can be trained using the existing abundant 3D object data, and naturally acts as a versatile tool to resolve the ambiguity when recovering material representations from RGB images. In addition, we develop a coarse-to-fine training strategy that leverages estimated materials to guide diffusion models to satisfy multi-view consistent constraints, leading to more stable and accurate results. Extensive experiments on real-world and synthetic datasets demonstrate that our approach achieves state-of-the-art performance on material recovery. The code will be available at https://zju3dv.github.io/IntrinsicAnything.

Prompt Optimizer of Text-to-Image Diffusion Models for Abstract Concept Understanding

Authors: Zezhong Fan, Xiaohan Li, Chenhao Fang, Topojoy Biswas, Kaushiki Nag, Jianpeng Xu, Kannan Achan

Link: http://arxiv.org/abs/2404.11589v1open in new window

Abstract: The rapid evolution of text-to-image diffusion models has opened the door of generative AI, enabling the translation of textual descriptions into visually compelling images with remarkable quality. However, a persistent challenge within this domain is the optimization of prompts to effectively convey abstract concepts into concrete objects. For example, text encoders can hardly express "peace", while can easily illustrate olive branches and white doves. This paper introduces a novel approach named Prompt Optimizer for Abstract Concepts (POAC) specifically designed to enhance the performance of text-to-image diffusion models in interpreting and generating images from abstract concepts. We propose a Prompt Language Model (PLM), which is initialized from a pre-trained language model, and then fine-tuned with a curated dataset of abstract concept prompts. The dataset is created with GPT-4 to extend the abstract concept to a scene and concrete objects. Our framework employs a Reinforcement Learning (RL)-based optimization strategy, focusing on the alignment between the generated images by a stable diffusion model and optimized prompts. Through extensive experiments, we demonstrate that our proposed POAC significantly improves the accuracy and aesthetic quality of generated images, particularly in the description of abstract concepts and alignment with optimized prompts. We also present a comprehensive analysis of our model's performance across diffusion models under different settings, showcasing its versatility and effectiveness in enhancing abstract concept representation.

MoA: Mixture-of-Attention for Subject-Context Disentanglement in Personalized Image Generation

Authors: Kuan-Chieh, Wang, Daniil Ostashev, Yuwei Fang, Sergey Tulyakov, Kfir Aberman

Link: http://arxiv.org/abs/2404.11565v1open in new window

Abstract: We introduce a new architecture for personalization of text-to-image diffusion models, coined Mixture-of-Attention (MoA). Inspired by the Mixture-of-Experts mechanism utilized in large language models (LLMs), MoA distributes the generation workload between two attention pathways: a personalized branch and a non-personalized prior branch. MoA is designed to retain the original model's prior by fixing its attention layers in the prior branch, while minimally intervening in the generation process with the personalized branch that learns to embed subjects in the layout and context generated by the prior branch. A novel routing mechanism manages the distribution of pixels in each layer across these branches to optimize the blend of personalized and generic content creation. Once trained, MoA facilitates the creation of high-quality, personalized images featuring multiple subjects with compositions and interactions as diverse as those generated by the original model. Crucially, MoA enhances the distinction between the model's pre-existing capability and the newly augmented personalized intervention, thereby offering a more disentangled subject-context control that was previously unattainable. Project page: https://snap-research.github.io/mixture-of-attention

Towards Highly Realistic Artistic Style Transfer via Stable Diffusion with Step-aware and Layer-aware Prompt

Authors: Zhanjie Zhang, Quanwei Zhang, Huaizhong Lin, Wei Xing, Juncheng Mo, Shuaicheng Huang, Jinheng Xie, Guangyuan Li, Junsheng Luan, Lei Zhao, Dalong Zhang, Lixia Chen

Link: http://arxiv.org/abs/2404.11474v1open in new window

Abstract: Artistic style transfer aims to transfer the learned artistic style onto an arbitrary content image, generating artistic stylized images. Existing generative adversarial network-based methods fail to generate highly realistic stylized images and always introduce obvious artifacts and disharmonious patterns. Recently, large-scale pre-trained diffusion models opened up a new way for generating highly realistic artistic stylized images. However, diffusion model-based methods generally fail to preserve the content structure of input content images well, introducing some undesired content structure and style patterns. To address the above problems, we propose a novel pre-trained diffusion-based artistic style transfer method, called LSAST, which can generate highly realistic artistic stylized images while preserving the content structure of input content images well, without bringing obvious artifacts and disharmonious style patterns. Specifically, we introduce a Step-aware and Layer-aware Prompt Space, a set of learnable prompts, which can learn the style information from the collection of artworks and dynamically adjusts the input images' content structure and style pattern. To train our prompt space, we propose a novel inversion method, called Step-ware and Layer-aware Prompt Inversion, which allows the prompt space to learn the style information of the artworks collection. In addition, we inject a pre-trained conditional branch of ControlNet into our LSAST, which further improved our framework's ability to maintain content structure. Extensive experiments demonstrate that our proposed method can generate more highly realistic artistic stylized images than the state-of-the-art artistic style transfer methods.

2024-04-16

RefFusion: Reference Adapted Diffusion Models for 3D Scene Inpainting

Authors: Ashkan Mirzaei, Riccardo De Lutio, Seung Wook Kim, David Acuna, Jonathan Kelly, Sanja Fidler, Igor Gilitschenski, Zan Gojcic

Link: http://arxiv.org/abs/2404.10765v1open in new window

Abstract: Neural reconstruction approaches are rapidly emerging as the preferred representation for 3D scenes, but their limited editability is still posing a challenge. In this work, we propose an approach for 3D scene inpainting -- the task of coherently replacing parts of the reconstructed scene with desired content. Scene inpainting is an inherently ill-posed task as there exist many solutions that plausibly replace the missing content. A good inpainting method should therefore not only enable high-quality synthesis but also a high degree of control. Based on this observation, we focus on enabling explicit control over the inpainted content and leverage a reference image as an efficient means to achieve this goal. Specifically, we introduce RefFusion, a novel 3D inpainting method based on a multi-scale personalization of an image inpainting diffusion model to the given reference view. The personalization effectively adapts the prior distribution to the target scene, resulting in a lower variance of score distillation objective and hence significantly sharper details. Our framework achieves state-of-the-art results for object removal while maintaining high controllability. We further demonstrate the generality of our formulation on other downstream tasks such as object insertion, scene outpainting, and sparse view reconstruction.

Efficient Conditional Diffusion Model with Probability Flow Sampling for Image Super-resolution

Authors: Yutao Yuan, Chun Yuan

Link: http://arxiv.org/abs/2404.10688v1open in new window

Abstract: Image super-resolution is a fundamentally ill-posed problem because multiple valid high-resolution images exist for one low-resolution image. Super-resolution methods based on diffusion probabilistic models can deal with the ill-posed nature by learning the distribution of high-resolution images conditioned on low-resolution images, avoiding the problem of blurry images in PSNR-oriented methods. However, existing diffusion-based super-resolution methods have high time consumption with the use of iterative sampling, while the quality and consistency of generated images are less than ideal due to problems like color shifting. In this paper, we propose Efficient Conditional Diffusion Model with Probability Flow Sampling (ECDP) for image super-resolution. To reduce the time consumption, we design a continuous-time conditional diffusion model for image super-resolution, which enables the use of probability flow sampling for efficient generation. Additionally, to improve the consistency of generated images, we propose a hybrid parametrization for the denoiser network, which interpolates between the data-predicting parametrization and the noise-predicting parametrization for different noise scales. Moreover, we design an image quality loss as a complement to the score matching loss of diffusion models, further improving the consistency and quality of super-resolution. Extensive experiments on DIV2K, ImageNet, and CelebA demonstrate that our method achieves higher super-resolution quality than existing diffusion-based image super-resolution methods while having lower time consumption. Our code is available at https://github.com/Yuan-Yutao/ECDP.

StyleCity: Large-Scale 3D Urban Scenes Stylization with Vision-and-Text Reference via Progressive Optimization

Authors: Yingshu Chen, Huajian Huang, Tuan-Anh Vu, Ka Chun Shum, Sai-Kit Yeung

Link: http://arxiv.org/abs/2404.10681v1open in new window

Abstract: Creating large-scale virtual urban scenes with variant styles is inherently challenging. To facilitate prototypes of virtual production and bypass the need for complex materials and lighting setups, we introduce the first vision-and-text-driven texture stylization system for large-scale urban scenes, StyleCity. Taking an image and text as references, StyleCity stylizes a 3D textured mesh of a large-scale urban scene in a semantics-aware fashion and generates a harmonic omnidirectional sky background. To achieve that, we propose to stylize a neural texture field by transferring 2D vision-and-text priors to 3D globally and locally. During 3D stylization, we progressively scale the planned training views of the input 3D scene at different levels in order to preserve high-quality scene content. We then optimize the scene style globally by adapting the scale of the style image with the scale of the training views. Moreover, we enhance local semantics consistency by the semantics-aware style loss which is crucial for photo-realistic stylization. Besides texture stylization, we further adopt a generative diffusion model to synthesize a style-consistent omnidirectional sky image, which offers a more immersive atmosphere and assists the semantic stylization process. The stylized neural texture field can be baked into an arbitrary-resolution texture, enabling seamless integration into conventional rendering pipelines and significantly easing the virtual production prototyping process. Extensive experiments demonstrate our stylized scenes' superiority in qualitative and quantitative performance and user preferences.

Four-hour thunderstorm nowcasting using deep diffusion models of satellite

Authors: Kuai Dai, Xutao Li, Junying Fang, Yunming Ye, Demin Yu, Di Xian, Danyu Qin

Link: http://arxiv.org/abs/2404.10512v1open in new window

Abstract: Convection (thunderstorm) develops rapidly within hours and is highly destructive, posing a significant challenge for nowcasting and resulting in substantial losses to nature and society. After the emergence of artificial intelligence (AI)-based methods, convection nowcasting has experienced rapid advancements, with its performance surpassing that of physics-based numerical weather prediction and other conventional approaches. However, the lead time and coverage of it still leave much to be desired and hardly meet the needs of disaster emergency response. Here, we propose a deep diffusion model of satellite (DDMS) to establish an AI-based convection nowcasting system. On one hand, it employs diffusion processes to effectively simulate complicated spatiotemporal evolution patterns of convective clouds, significantly improving the forecast lead time. On the other hand, it utilizes geostationary satellite brightness temperature data, thereby achieving planetary-scale forecast coverage. During long-term tests and objective validation based on the FengYun-4A satellite, our system achieves, for the first time, effective convection nowcasting up to 4 hours, with broad coverage (about 20,000,000 km2), remarkable accuracy, and high resolution (15 minutes; 4 km). Its performance reaches a new height in convection nowcasting compared to the existing models. In terms of application, our system operates efficiently (forecasting 4 hours of convection in 8 minutes), and is highly transferable with the potential to collaborate with multiple satellites for global convection nowcasting. Furthermore, our results highlight the remarkable capabilities of diffusion models in convective clouds forecasting, as well as the significant value of geostationary satellite data when empowered by AI technologies.

Portrait3D: Text-Guided High-Quality 3D Portrait Generation Using Pyramid Representation and GANs Prior

Authors: Yiqian Wu, Hao Xu, Xiangjun Tang, Xien Chen, Siyu Tang, Zhebin Zhang, Chen Li, Xiaogang Jin

Link: http://arxiv.org/abs/2404.10394v1open in new window

Abstract: Existing neural rendering-based text-to-3D-portrait generation methods typically make use of human geometry prior and diffusion models to obtain guidance. However, relying solely on geometry information introduces issues such as the Janus problem, over-saturation, and over-smoothing. We present Portrait3D, a novel neural rendering-based framework with a novel joint geometry-appearance prior to achieve text-to-3D-portrait generation that overcomes the aforementioned issues. To accomplish this, we train a 3D portrait generator, 3DPortraitGAN-Pyramid, as a robust prior. This generator is capable of producing 360{\deg} canonical 3D portraits, serving as a starting point for the subsequent diffusion-based generation process. To mitigate the "grid-like" artifact caused by the high-frequency information in the feature-map-based 3D representation commonly used by most 3D-aware GANs, we integrate a novel pyramid tri-grid 3D representation into 3DPortraitGAN-Pyramid. To generate 3D portraits from text, we first project a randomly generated image aligned with the given prompt into the pre-trained 3DPortraitGAN-Pyramid's latent space. The resulting latent code is then used to synthesize a pyramid tri-grid. Beginning with the obtained pyramid tri-grid, we use score distillation sampling to distill the diffusion model's knowledge into the pyramid tri-grid. Following that, we utilize the diffusion model to refine the rendered images of the 3D portrait and then use these refined images as training data to further optimize the pyramid tri-grid, effectively eliminating issues with unrealistic color and unnatural artifacts. Our experimental results show that Portrait3D can produce realistic, high-quality, and canonical 3D portraits that align with the prompt.

Generating Counterfactual Trajectories with Latent Diffusion Models for Concept Discovery

Authors: Payal Varshney, Adriano Lucieri, Christoph Balada, Andreas Dengel, Sheraz Ahmed

Link: http://arxiv.org/abs/2404.10356v1open in new window

Abstract: Trustworthiness is a major prerequisite for the safe application of opaque deep learning models in high-stakes domains like medicine. Understanding the decision-making process not only contributes to fostering trust but might also reveal previously unknown decision criteria of complex models that could advance the state of medical research. The discovery of decision-relevant concepts from black box models is a particularly challenging task. This study proposes Concept Discovery through Latent Diffusion-based Counterfactual Trajectories (CDCT), a novel three-step framework for concept discovery leveraging the superior image synthesis capabilities of diffusion models. In the first step, CDCT uses a Latent Diffusion Model (LDM) to generate a counterfactual trajectory dataset. This dataset is used to derive a disentangled representation of classification-relevant concepts using a Variational Autoencoder (VAE). Finally, a search algorithm is applied to identify relevant concepts in the disentangled latent space. The application of CDCT to a classifier trained on the largest public skin lesion dataset revealed not only the presence of several biases but also meaningful biomarkers. Moreover, the counterfactuals generated within CDCT show better FID scores than those produced by a previously established state-of-the-art method, while being 12 times more resource-efficient. Unsupervised concept discovery holds great potential for the application of trustworthy AI and the further development of human knowledge in various domains. CDCT represents a further step in this direction.

Efficiently Adversarial Examples Generation for Visual-Language Models under Targeted Transfer Scenarios using Diffusion Models

Authors: Qi Guo, Shanmin Pang, Xiaojun Jia, Qing Guo

Link: http://arxiv.org/abs/2404.10335v2open in new window

Abstract: Targeted transfer-based attacks involving adversarial examples pose a significant threat to large visual-language models (VLMs). However, the state-of-the-art (SOTA) transfer-based attacks incur high costs due to excessive iteration counts. Furthermore, the generated adversarial examples exhibit pronounced adversarial noise and demonstrate limited efficacy in evading defense methods such as DiffPure. To address these issues, inspired by score matching, we introduce AdvDiffVLM, which utilizes diffusion models to generate natural, unrestricted adversarial examples. Specifically, AdvDiffVLM employs Adaptive Ensemble Gradient Estimation to modify the score during the diffusion model's reverse generation process, ensuring the adversarial examples produced contain natural adversarial semantics and thus possess enhanced transferability. Simultaneously, to enhance the quality of adversarial examples further, we employ the GradCAM-guided Mask method to disperse adversarial semantics throughout the image, rather than concentrating them in a specific area. Experimental results demonstrate that our method achieves a speedup ranging from 10X to 30X compared to existing transfer-based attack methods, while maintaining superior quality of adversarial examples. Additionally, the generated adversarial examples possess strong transferability and exhibit increased robustness against adversarial defense methods. Notably, AdvDiffVLM can successfully attack commercial VLMs, including GPT-4V, in a black-box manner.

OmniSSR: Zero-shot Omnidirectional Image Super-Resolution using Stable Diffusion Model

Authors: Runyi Li, Xuhan Sheng, Weiqi Li, Jian Zhang

Link: http://arxiv.org/abs/2404.10312v1open in new window

Abstract: Omnidirectional images (ODIs) are commonly used in real-world visual tasks, and high-resolution ODIs help improve the performance of related visual tasks. Most existing super-resolution methods for ODIs use end-to-end learning strategies, resulting in inferior realness of generated images and a lack of effective out-of-domain generalization capabilities in training methods. Image generation methods represented by diffusion model provide strong priors for visual tasks and have been proven to be effectively applied to image restoration tasks. Leveraging the image priors of the Stable Diffusion (SD) model, we achieve omnidirectional image super-resolution with both fidelity and realness, dubbed as OmniSSR. Firstly, we transform the equirectangular projection (ERP) images into tangent projection (TP) images, whose distribution approximates the planar image domain. Then, we use SD to iteratively sample initial high-resolution results. At each denoising iteration, we further correct and update the initial results using the proposed Octadecaplex Tangent Information Interaction (OTII) and Gradient Decomposition (GD) technique to ensure better consistency. Finally, the TP images are transformed back to obtain the final high-resolution results. Our method is zero-shot, requiring no training or fine-tuning. Experiments of our method on two benchmark datasets demonstrate the effectiveness of our proposed method.

Long-form music generation with latent diffusion

Authors: Zach Evans, Julian D. Parker, CJ Carr, Zack Zukowski, Josiah Taylor, Jordi Pons

Link: http://arxiv.org/abs/2404.10301v1open in new window

Abstract: Audio-based generative models for music have seen great strides recently, but so far have not managed to produce full-length music tracks with coherent musical structure. We show that by training a generative model on long temporal contexts it is possible to produce long-form music of up to 4m45s. Our model consists of a diffusion-transformer operating on a highly downsampled continuous latent representation (latent rate of 21.5Hz). It obtains state-of-the-art generations according to metrics on audio quality and prompt alignment, and subjective tests reveal that it produces full-length music with coherent structure.

OneActor: Consistent Character Generation via Cluster-Conditioned Guidance

Authors: Jiahao Wang, Caixia Yan, Haonan Lin, Weizhan Zhang

Link: http://arxiv.org/abs/2404.10267v1open in new window

Abstract: Text-to-image diffusion models benefit artists with high-quality image generation. Yet its stochastic nature prevent artists from creating consistent images of the same character. Existing methods try to tackle this challenge and generate consistent content in various ways. However, they either depend on external data or require expensive tuning of the diffusion model. For this issue, we argue that a lightweight but intricate guidance is enough to function. Aiming at this, we lead the way to formalize the objective of consistent generation, derive a clustering-based score function and propose a novel paradigm, OneActor. We design a cluster-conditioned model which incorporates posterior samples to guide the denoising trajectories towards the target cluster. To overcome the overfitting challenge shared by one-shot tuning pipelines, we devise auxiliary components to simultaneously augment the tuning and regulate the inference. This technique is later verified to significantly enhance the content diversity of generated images. Comprehensive experiments show that our method outperforms a variety of baselines with satisfactory character consistency, superior prompt conformity as well as high image quality. And our method is at least 4 times faster than tuning-based baselines. Furthermore, to our best knowledge, we first prove that the semantic space has the same interpolation property as the latent space dose. This property can serve as another promising tool for fine generation control.

2024-04-15

Salient Object-Aware Background Generation using Text-Guided Diffusion Models

Authors: Amir Erfan Eshratifar, Joao V. B. Soares, Kapil Thadani, Shaunak Mishra, Mikhail Kuznetsov, Yueh-Ning Ku, Paloma de Juan

Link: http://arxiv.org/abs/2404.10157v1open in new window

Abstract: Generating background scenes for salient objects plays a crucial role across various domains including creative design and e-commerce, as it enhances the presentation and context of subjects by integrating them into tailored environments. Background generation can be framed as a task of text-conditioned outpainting, where the goal is to extend image content beyond a salient object's boundaries on a blank background. Although popular diffusion models for text-guided inpainting can also be used for outpainting by mask inversion, they are trained to fill in missing parts of an image rather than to place an object into a scene. Consequently, when used for background creation, inpainting models frequently extend the salient object's boundaries and thereby change the object's identity, which is a phenomenon we call "object expansion." This paper introduces a model for adapting inpainting diffusion models to the salient object outpainting task using Stable Diffusion and ControlNet architectures. We present a series of qualitative and quantitative results across models and datasets, including a newly proposed metric to measure object expansion that does not require any human labeling. Compared to Stable Diffusion 2.0 Inpainting, our proposed approach reduces object expansion by 3.6x on average with no degradation in standard visual metrics across multiple datasets.

in2IN: Leveraging individual Information to Generate Human INteractions

Authors: Pablo Ruiz Ponce, German Barquero, Cristina Palmero, Sergio Escalera, Jose Garcia-Rodriguez

Link: http://arxiv.org/abs/2404.09988v1open in new window

Abstract: Generating human-human motion interactions conditioned on textual descriptions is a very useful application in many areas such as robotics, gaming, animation, and the metaverse. Alongside this utility also comes a great difficulty in modeling the highly dimensional inter-personal dynamics. In addition, properly capturing the intra-personal diversity of interactions has a lot of challenges. Current methods generate interactions with limited diversity of intra-person dynamics due to the limitations of the available datasets and conditioning strategies. For this, we introduce in2IN, a novel diffusion model for human-human motion generation which is conditioned not only on the textual description of the overall interaction but also on the individual descriptions of the actions performed by each person involved in the interaction. To train this model, we use a large language model to extend the InterHuman dataset with individual descriptions. As a result, in2IN achieves state-of-the-art performance in the InterHuman dataset. Furthermore, in order to increase the intra-personal diversity on the existing interaction datasets, we propose DualMDM, a model composition technique that combines the motions generated with in2IN and the motions generated by a single-person motion prior pre-trained on HumanML3D. As a result, DualMDM generates motions with higher individual diversity and improves control over the intra-person dynamics while maintaining inter-personal coherence.

MaxFusion: Plug&Play Multi-Modal Generation in Text-to-Image Diffusion Models

Authors: Nithin Gopalakrishnan Nair, Jeya Maria Jose Valanarasu, Vishal M Patel

Link: http://arxiv.org/abs/2404.09977v1open in new window

Abstract: Large diffusion-based Text-to-Image (T2I) models have shown impressive generative powers for text-to-image generation as well as spatially conditioned image generation. For most applications, we can train the model end-toend with paired data to obtain photorealistic generation quality. However, to add an additional task, one often needs to retrain the model from scratch using paired data across all modalities to retain good generation performance. In this paper, we tackle this issue and propose a novel strategy to scale a generative model across new tasks with minimal compute. During our experiments, we discovered that the variance maps of intermediate feature maps of diffusion models capture the intensity of conditioning. Utilizing this prior information, we propose MaxFusion, an efficient strategy to scale up text-to-image generation models to accommodate new modality conditions. Specifically, we combine aligned features of multiple models, hence bringing a compositional effect. Our fusion strategy can be integrated into off-the-shelf models to enhance their generative prowess.

EdgeRelight360: Text-Conditioned 360-Degree HDR Image Generation for Real-Time On-Device Video Portrait Relighting

Authors: Min-Hui Lin, Mahesh Reddy, Guillaume Berger, Michel Sarkis, Fatih Porikli, Ning Bi

Link: http://arxiv.org/abs/2404.09918v1open in new window

Abstract: In this paper, we present EdgeRelight360, an approach for real-time video portrait relighting on mobile devices, utilizing text-conditioned generation of 360-degree high dynamic range image (HDRI) maps. Our method proposes a diffusion-based text-to-360-degree image generation in the HDR domain, taking advantage of the HDR10 standard. This technique facilitates the generation of high-quality, realistic lighting conditions from textual descriptions, offering flexibility and control in portrait video relighting task. Unlike the previous relighting frameworks, our proposed system performs video relighting directly on-device, enabling real-time inference with real 360-degree HDRI maps. This on-device processing ensures both privacy and guarantees low runtime, providing an immediate response to changes in lighting conditions or user inputs. Our approach paves the way for new possibilities in real-time video applications, including video conferencing, gaming, and augmented reality, by allowing dynamic, text-based control of lighting conditions.

A Diffusion-based Data Generator for Training Object Recognition Models in Ultra-Range Distance

Authors: Eran Bamani, Eden Nissinman, Lisa Koenigsberg, Inbar Meir, Avishai Sintov

Link: http://arxiv.org/abs/2404.09846v1open in new window

Abstract: Object recognition, commonly performed by a camera, is a fundamental requirement for robots to complete complex tasks. Some tasks require recognizing objects far from the robot's camera. A challenging example is Ultra-Range Gesture Recognition (URGR) in human-robot interaction where the user exhibits directive gestures at a distance of up to 25~m from the robot. However, training a model to recognize hardly visible objects located in ultra-range requires an exhaustive collection of a significant amount of labeled samples. The generation of synthetic training datasets is a recent solution to the lack of real-world data, while unable to properly replicate the realistic visual characteristics of distant objects in images. In this letter, we propose the Diffusion in Ultra-Range (DUR) framework based on a Diffusion model to generate labeled images of distant objects in various scenes. The DUR generator receives a desired distance and class (e.g., gesture) and outputs a corresponding synthetic image. We apply DUR to train a URGR model with directive gestures in which fine details of the gesturing hand are challenging to distinguish. DUR is compared to other types of generative models showcasing superiority both in fidelity and in recognition success rate when training a URGR model. More importantly, training a DUR model on a limited amount of real data and then using it to generate synthetic data for training a URGR model outperforms directly training the URGR model on real data. The synthetic-based URGR model is also demonstrated in gesture-based direction of a ground robot.

Digging into contrastive learning for robust depth estimation with diffusion models

Authors: Jiyuan Wang, Chunyu Lin, Lang Nie, Kang Liao, Shuwei Shao, Yao Zhao

Link: http://arxiv.org/abs/2404.09831v2open in new window

Abstract: Recently, diffusion-based depth estimation methods have drawn widespread attention due to their elegant denoising patterns and promising performance. However, they are typically unreliable under adverse conditions prevalent in real-world scenarios, such as rainy, snowy, etc. In this paper, we propose a novel robust depth estimation method called D4RD, featuring a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments. Concretely, we integrate the strength of knowledge distillation into contrastive learning, building the `trinity' contrastive scheme. This scheme utilizes the sampled noise of the forward diffusion process as a natural reference, guiding the predicted noise in diverse scenes toward a more stable and precise optimum. Moreover, we extend noise-level trinity to encompass more generic feature and image levels, establishing a multi-level contrast to distribute the burden of robust perception across the overall network. Before addressing complex scenarios, we enhance the stability of the baseline diffusion model with three straightforward yet effective improvements, which facilitate convergence and remove depth outliers. Extensive experiments demonstrate that D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions. The code for D4RD will be made available for further exploration and adoption.

Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models

Authors: Ziwei Luo, Fredrik K. Gustafsson, Zheng Zhao, Jens Sjölund, Thomas B. Schön

Link: http://arxiv.org/abs/2404.09732v1open in new window

Abstract: Though diffusion models have been successfully applied to various image restoration (IR) tasks, their performance is sensitive to the choice of training datasets. Typically, diffusion models trained in specific datasets fail to recover images that have out-of-distribution degradations. To address this problem, this work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR). More specifically, all low-quality images are simulated with a synthetic degradation pipeline that contains multiple common degradations such as blur, resize, noise, and JPEG compression. Then we introduce robust training for a degradation-aware CLIP model to extract enriched image content features to assist high-quality image restoration. Our base diffusion model is the image restoration SDE (IR-SDE). Built upon it, we further present a posterior sampling strategy for fast noise-free image generation. We evaluate our model on both synthetic and real-world degradation datasets. Moreover, experiments on the unified image restoration task illustrate that the proposed posterior sampling improves image generation quality for various degradations.

Magic Clothing: Controllable Garment-Driven Image Synthesis

Authors: Weifeng Chen, Tao Gu, Yuhao Xu, Chengcai Chen

Link: http://arxiv.org/abs/2404.09512v1open in new window

Abstract: We propose Magic Clothing, a latent diffusion model (LDM)-based network architecture for an unexplored garment-driven image synthesis task. Aiming at generating customized characters wearing the target garments with diverse text prompts, the image controllability is the most critical issue, i.e., to preserve the garment details and maintain faithfulness to the text prompts. To this end, we introduce a garment extractor to capture the detailed garment features, and employ self-attention fusion to incorporate them into the pretrained LDMs, ensuring that the garment details remain unchanged on the target character. Then, we leverage the joint classifier-free guidance to balance the control of garment features and text prompts over the generated results. Meanwhile, the proposed garment extractor is a plug-in module applicable to various finetuned LDMs, and it can be combined with other extensions like ControlNet and IP-Adapter to enhance the diversity and controllability of the generated characters. Furthermore, we design Matched-Points-LPIPS (MP-LPIPS), a robust metric for evaluating the consistency of the target image to the source garment. Extensive experiments demonstrate that our Magic Clothing achieves state-of-the-art results under various conditional controls for garment-driven image synthesis. Our source code is available at https://github.com/ShineChen1024/MagicClothing.

PhyScene: Physically Interactable 3D Scene Synthesis for Embodied AI

Authors: Yandan Yang, Baoxiong Jia, Peiyuan Zhi, Siyuan Huang

Link: http://arxiv.org/abs/2404.09465v1open in new window

Abstract: With recent developments in Embodied Artificial Intelligence (EAI) research, there has been a growing demand for high-quality, large-scale interactive scene generation. While prior methods in scene synthesis have prioritized the naturalness and realism of the generated scenes, the physical plausibility and interactivity of scenes have been largely left unexplored. To address this disparity, we introduce PhyScene, a novel method dedicated to generating interactive 3D scenes characterized by realistic layouts, articulated objects, and rich physical interactivity tailored for embodied agents. Based on a conditional diffusion model for capturing scene layouts, we devise novel physics- and interactivity-based guidance mechanisms that integrate constraints from object collision, room layout, and object reachability. Through extensive experiments, we demonstrate that PhyScene effectively leverages these guidance functions for physically interactable scene synthesis, outperforming existing state-of-the-art scene synthesis methods by a large margin. Our findings suggest that the scenes generated by PhyScene hold considerable potential for facilitating diverse skill acquisition among agents within interactive environments, thereby catalyzing further advancements in embodied AI research. Project website: http://physcene.github.io.

Super-resolution of biomedical volumes with 2D supervision

Authors: Cheng Jiang, Alexander Gedeon, Yiwei Lyu, Eric Landgraf, Yufeng Zhang, Xinhai Hou, Akhil Kondepudi, Asadur Chowdury, Honglak Lee, Todd Hollon

Link: http://arxiv.org/abs/2404.09425v1open in new window

Abstract: Volumetric biomedical microscopy has the potential to increase the diagnostic information extracted from clinical tissue specimens and improve the diagnostic accuracy of both human pathologists and computational pathology models. Unfortunately, barriers to integrating 3-dimensional (3D) volumetric microscopy into clinical medicine include long imaging times, poor depth / z-axis resolution, and an insufficient amount of high-quality volumetric data. Leveraging the abundance of high-resolution 2D microscopy data, we introduce masked slice diffusion for super-resolution (MSDSR), which exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens. This intrinsic characteristic allows for super-resolution models trained on high-resolution images from one plane (e.g., XY) to effectively generalize to others (XZ, YZ), overcoming the traditional dependency on orientation. We focus on the application of MSDSR to stimulated Raman histology (SRH), an optical imaging modality for biological specimen analysis and intraoperative diagnosis, characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning. To evaluate MSDSR's efficacy, we introduce a new performance metric, SliceFID, and demonstrate MSDSR's superior performance over baseline models through extensive evaluations. Our findings reveal that MSDSR not only significantly enhances the quality and resolution of 3D volumetric data, but also addresses major obstacles hindering the broader application of 3D volumetric microscopy in clinical diagnostics and biomedical research.

Neural McKean-Vlasov Processes: Distributional Dependence in Diffusion Processes

Authors: Haoming Yang, Ali Hasan, Yuting Ng, Vahid Tarokh

Link: http://arxiv.org/abs/2404.09402v1open in new window

Abstract: McKean-Vlasov stochastic differential equations (MV-SDEs) provide a mathematical description of the behavior of an infinite number of interacting particles by imposing a dependence on the particle density. As such, we study the influence of explicitly including distributional information in the parameterization of the SDE. We propose a series of semi-parametric methods for representing MV-SDEs, and corresponding estimators for inferring parameters from data based on the properties of the MV-SDE. We analyze the characteristics of the different architectures and estimators, and consider their applicability in relevant machine learning problems. We empirically compare the performance of the different architectures and estimators on real and synthetic datasets for time series and probabilistic modeling. The results suggest that explicitly including distributional dependence in the parameterization of the SDE is effective in modeling temporal data with interaction under an exchangeability assumption while maintaining strong performance for standard It^o-SDEs due to the richer class of probability flows associated with MV-SDEs.

Authors: Peifei Zhu, Tsubasa Takahashi, Hirokatsu Kataoka

Link: http://arxiv.org/abs/2404.09401v1open in new window

Abstract: Diffusion Models (DMs) have shown remarkable capabilities in various image-generation tasks. However, there are growing concerns that DMs could be used to imitate unauthorized creations and thus raise copyright issues. To address this issue, we propose a novel framework that embeds personal watermarks in the generation of adversarial examples. Such examples can force DMs to generate images with visible watermarks and prevent DMs from imitating unauthorized images. We construct a generator based on conditional adversarial networks and design three losses (adversarial loss, GAN loss, and perturbation loss) to generate adversarial examples that have subtle perturbation but can effectively attack DMs to prevent copyright violations. Training a generator for a personal watermark by our method only requires 5-10 samples within 2-3 minutes, and once the generator is trained, it can generate adversarial examples with that watermark significantly fast (0.2s per image). We conduct extensive experiments in various conditional image-generation scenarios. Compared to existing methods that generate images with chaotic textures, our method adds visible watermarks on the generated images, which is a more straightforward way to indicate copyright violations. We also observe that our adversarial examples exhibit good transferability across unknown generative models. Therefore, this work provides a simple yet powerful way to protect copyright from DM-based imitation.

2024-04-14

DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling

Authors: Xuening Yuan, Hongyu Yang, Yueming Zhao, Di Huang

Link: http://arxiv.org/abs/2404.09227v1open in new window

Abstract: Recent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.

LoopAnimate: Loopable Salient Object Animation

Authors: Fanyi Wang, Peng Liu, Haotian Hu, Dan Meng, Jingwen Su, Jinjin Xu, Yanhao Zhang, Xiaoming Ren, Zhiwang Zhang

Link: http://arxiv.org/abs/2404.09172v1open in new window

Abstract: Research on diffusion model-based video generation has advanced rapidly. However, limitations in object fidelity and generation length hinder its practical applications. Additionally, specific domains like animated wallpapers require seamless looping, where the first and last frames of the video match seamlessly. To address these challenges, this paper proposes LoopAnimate, a novel method for generating videos with consistent start and end frames. To enhance object fidelity, we introduce a framework that decouples multi-level image appearance and textual semantic information. Building upon an image-to-image diffusion model, our approach incorporates both pixel-level and feature-level information from the input image, injecting image appearance and textual semantic embeddings at different positions of the diffusion model. Existing UNet-based video generation models require to input the entire videos during training to encode temporal and positional information at once. However, due to limitations in GPU memory, the number of frames is typically restricted to 16. To address this, this paper proposes a three-stage training strategy with progressively increasing frame numbers and reducing fine-tuning modules. Additionally, we introduce the Temporal E nhanced Motion Module(TEMM) to extend the capacity for encoding temporal and positional information up to 36 frames. The proposed LoopAnimate, which for the first time extends the single-pass generation length of UNet-based video generation models to 35 frames while maintaining high-quality video generation. Experiments demonstrate that LoopAnimate achieves state-of-the-art performance in both objective metrics, such as fidelity and temporal consistency, and subjective evaluation results.

GCC: Generative Calibration Clustering

Authors: Haifeng Xia, Hai Huang, Zhengming Ding

Link: http://arxiv.org/abs/2404.09115v1open in new window

Abstract: Deep clustering as an important branch of unsupervised representation learning focuses on embedding semantically similar samples into the identical feature space. This core demand inspires the exploration of contrastive learning and subspace clustering. However, these solutions always rely on the basic assumption that there are sufficient and category-balanced samples for generating valid high-level representation. This hypothesis actually is too strict to be satisfied for real-world applications. To overcome such a challenge, the natural strategy is utilizing generative models to augment considerable instances. How to use these novel samples to effectively fulfill clustering performance improvement is still difficult and under-explored. In this paper, we propose a novel Generative Calibration Clustering (GCC) method to delicately incorporate feature learning and augmentation into clustering procedure. First, we develop a discriminative feature alignment mechanism to discover intrinsic relationship across real and generated samples. Second, we design a self-supervised metric learning to generate more reliable cluster assignment to boost the conditional diffusion generation. Extensive experimental results on three benchmarks validate the effectiveness and advantage of our proposed method over the state-of-the-art methods.

Exploring Generative AI for Sim2Real in Driving Data Synthesis

Authors: Haonan Zhao, Yiting Wang, Thomas Bashford-Rogers, Valentina Donzella, Kurt Debattista

Link: http://arxiv.org/abs/2404.09111v1open in new window

Abstract: Datasets are essential for training and testing vehicle perception algorithms. However, the collection and annotation of real-world images is time-consuming and expensive. Driving simulators offer a solution by automatically generating various driving scenarios with corresponding annotations, but the simulation-to-reality (Sim2Real) domain gap remains a challenge. While most of the Generative Artificial Intelligence (AI) follows the de facto Generative Adversarial Nets (GANs)-based methods, the recent emerging diffusion probabilistic models have not been fully explored in mitigating Sim2Real challenges for driving data synthesis. To explore the performance, this paper applied three different generative AI methods to leverage semantic label maps from a driving simulator as a bridge for the creation of realistic datasets. A comparative analysis of these methods is presented from the perspective of image quality and perception. New synthetic datasets, which include driving images and auto-generated high-quality annotations, are produced with low costs and high scene variability. The experimental results show that although GAN-based methods are adept at generating high-quality images when provided with manually annotated labels, ControlNet produces synthetic datasets with fewer artefacts and more structural fidelity when using simulator-generated labels. This suggests that the diffusion-based approach may provide improved stability and an alternative method for addressing Sim2Real challenges.

2024-04-13

Rethinking Iterative Stereo Matching from Diffusion Bridge Model Perspective

Authors: Yuguang Shi

Link: http://arxiv.org/abs/2404.09051v1open in new window

Abstract: Recently, iteration-based stereo matching has shown great potential. However, these models optimize the disparity map using RNN variants. The discrete optimization process poses a challenge of information loss, which restricts the level of detail that can be expressed in the generated disparity map. In order to address these issues, we propose a novel training approach that incorporates diffusion models into the iterative optimization process. We designed a Time-based Gated Recurrent Unit (T-GRU) to correlate temporal and disparity outputs. Unlike standard recurrent units, we employ Agent Attention to generate more expressive features. We also designed an attention-based context network to capture a large amount of contextual information. Experiments on several public benchmarks show that we have achieved competitive stereo matching performance. Our model ranks first in the Scene Flow dataset, achieving over a 7% improvement compared to competing methods, and requires only 8 iterations to achieve state-of-the-art results.

Theoretical research on generative diffusion models: an overview

Authors: Melike Nur Yeğin, Mehmet Fatih Amasyalı

Link: http://arxiv.org/abs/2404.09016v1open in new window

Abstract: Generative diffusion models showed high success in many fields with a powerful theoretical background. They convert the data distribution to noise and remove the noise back to obtain a similar distribution. Many existing reviews focused on the specific application areas without concentrating on the research about the algorithm. Unlike them we investigated the theoretical developments of the generative diffusion models. These approaches mainly divide into two: training-based and sampling-based. Awakening to this allowed us a clear and understandable categorization for the researchers who will make new developments in the future.

Diffusion Models Meet Remote Sensing: Principles, Methods, and Perspectives

Authors: Yidan Liu, Jun Yue, Shaobo Xia, Pedram Ghamisi, Weiying Xie, Leyuan Fang

Link: http://arxiv.org/abs/2404.08926v2open in new window

Abstract: As a newly emerging advance in deep generative models, diffusion models have achieved state-of-the-art results in many fields, including computer vision, natural language processing, and molecule design. The remote sensing community has also noticed the powerful ability of diffusion models and quickly applied them to a variety of tasks for image processing. Given the rapid increase in research on diffusion models in the field of remote sensing, it is necessary to conduct a comprehensive review of existing diffusion model-based remote sensing papers, to help researchers recognize the potential of diffusion models and provide some directions for further exploration. Specifically, this paper first introduces the theoretical background of diffusion models, and then systematically reviews the applications of diffusion models in remote sensing, including image generation, enhancement, and interpretation. Finally, the limitations of existing remote sensing diffusion models and worthy research directions for further exploration are discussed and summarized.

2024-04-12

Semantic Approach to Quantifying the Consistency of Diffusion Model Image Generation

Authors: Brinnae Bent

Link: http://arxiv.org/abs/2404.08799v1open in new window

Abstract: In this study, we identify the need for an interpretable, quantitative score of the repeatability, or consistency, of image generation in diffusion models. We propose a semantic approach, using a pairwise mean CLIP (Contrastive Language-Image Pretraining) score as our semantic consistency score. We applied this metric to compare two state-of-the-art open-source image generation diffusion models, Stable Diffusion XL and PixArt-{\alpha}, and we found statistically significant differences between the semantic consistency scores for the models. Agreement between the Semantic Consistency Score selected model and aggregated human annotations was 94%. We also explored the consistency of SDXL and a LoRA-fine-tuned version of SDXL and found that the fine-tuned model had significantly higher semantic consistency in generated images. The Semantic Consistency Score proposed here offers a measure of image generation alignment, facilitating the evaluation of model architectures for specific tasks and aiding in informed decision-making regarding model selection.

Lossy Image Compression with Foundation Diffusion Models

Authors: Lucas Relic, Roberto Azevedo, Markus Gross, Christopher Schroers

Link: http://arxiv.org/abs/2404.08580v1open in new window

Abstract: Incorporating diffusion models in the image compression domain has the potential to produce realistic and detailed reconstructions, especially at extremely low bitrates. Previous methods focus on using diffusion models as expressive decoders robust to quantization errors in the conditioning signals, yet achieving competitive results in this manner requires costly training of the diffusion model and long inference times due to the iterative generative process. In this work we formulate the removal of quantization error as a denoising task, using diffusion to recover lost information in the transmitted image latent. Our approach allows us to perform less than 10% of the full diffusion generative process and requires no architectural changes to the diffusion model, enabling the use of foundation models as a strong prior without additional fine tuning of the backbone. Our proposed codec outperforms previous methods in quantitative realism metrics, and we verify that our reconstructions are qualitatively preferred by end users, even when other methods use twice the bitrate.

2024-04-11

OpenBias: Open-set Bias Detection in Text-to-Image Generative Models

Authors: Moreno D'Incà, Elia Peruzzo, Massimiliano Mancini, Dejia Xu, Vidit Goel, Xingqian Xu, Zhangyang Wang, Humphrey Shi, Nicu Sebe

Link: http://arxiv.org/abs/2404.07990v1open in new window

Abstract: Text-to-image generative models are becoming increasingly popular and accessible to the general public. As these models see large-scale deployments, it is necessary to deeply investigate their safety and fairness to not disseminate and perpetuate any kind of biases. However, existing works focus on detecting closed sets of biases defined a priori, limiting the studies to well-known concepts. In this paper, we tackle the challenge of open-set bias detection in text-to-image generative models presenting OpenBias, a new pipeline that identifies and quantifies the severity of biases agnostically, without access to any precompiled set. OpenBias has three stages. In the first phase, we leverage a Large Language Model (LLM) to propose biases given a set of captions. Secondly, the target generative model produces images using the same set of captions. Lastly, a Vision Question Answering model recognizes the presence and extent of the previously proposed biases. We study the behavior of Stable Diffusion 1.5, 2, and XL emphasizing new biases, never investigated before. Via quantitative experiments, we demonstrate that OpenBias agrees with current closed-set bias detection methods and human judgement.

Authors: Mazda Moayeri, Samyadeep Basu, Sriram Balasubramanian, Priyatham Kattakinda, Atoosa Chengini, Robert Brauneis, Soheil Feizi

Link: http://arxiv.org/abs/2404.08030v1open in new window

Abstract: Recent text-to-image generative models such as Stable Diffusion are extremely adept at mimicking and generating copyrighted content, raising concerns amongst artists that their unique styles may be improperly copied. Understanding how generative models copy "artistic style" is more complex than duplicating a single image, as style is comprised by a set of elements (or signature) that frequently co-occurs across a body of work, where each individual work may vary significantly. In our paper, we first reformulate the problem of "artistic copyright infringement" to a classification problem over image sets, instead of probing image-wise similarities. We then introduce ArtSavant, a practical (i.e., efficient and easy to understand) tool to (i) determine the unique style of an artist by comparing it to a reference dataset of works from 372 artists curated from WikiArt, and (ii) recognize if the identified style reappears in generated images. We leverage two complementary methods to perform artistic style classification over image sets, includingTagMatch, which is a novel inherently interpretable and attributable method, making it more suitable for broader use by non-technical stake holders (artists, lawyers, judges, etc). Leveraging ArtSavant, we then perform a large-scale empirical study to provide quantitative insight on the prevalence of artistic style copying across 3 popular text-to-image generative models. Namely, amongst a dataset of prolific artists (including many famous ones), only 20% of them appear to have their styles be at a risk of copying via simple prompting of today's popular text-to-image generative models.

ControlNet++: Improving Conditional Controls with Efficient Consistency Feedback

Authors: Ming Li, Taojiannan Yang, Huafeng Kuang, Jie Wu, Zhaoning Wang, Xuefeng Xiao, Chen Chen

Link: http://arxiv.org/abs/2404.07987v1open in new window

Abstract: To enhance the controllability of text-to-image diffusion models, existing efforts like ControlNet incorporated image-based conditional controls. In this paper, we reveal that existing methods still face significant challenges in generating images that align with the image conditional controls. To this end, we propose ControlNet++, a novel approach that improves controllable generation by explicitly optimizing pixel-level cycle consistency between generated images and conditional controls. Specifically, for an input conditional control, we use a pre-trained discriminative reward model to extract the corresponding condition of the generated images, and then optimize the consistency loss between the input conditional control and extracted condition. A straightforward implementation would be generating images from random noises and then calculating the consistency loss, but such an approach requires storing gradients for multiple sampling timesteps, leading to considerable time and memory costs. To address this, we introduce an efficient reward strategy that deliberately disturbs the input images by adding noise, and then uses the single-step denoised images for reward fine-tuning. This avoids the extensive costs associated with image sampling, allowing for more efficient reward fine-tuning. Extensive experiments show that ControlNet++ significantly improves controllability under various conditional controls. For example, it achieves improvements over ControlNet by 7.9% mIoU, 13.4% SSIM, and 7.6% RMSE, respectively, for segmentation mask, line-art edge, and depth conditions.

View Selection for 3D Captioning via Diffusion Ranking

Authors: Tiange Luo, Justin Johnson, Honglak Lee

Link: http://arxiv.org/abs/2404.07984v1open in new window

Abstract: Scalable annotation approaches are crucial for constructing extensive 3D-text datasets, facilitating a broader range of applications. However, existing methods sometimes lead to the generation of hallucinated captions, compromising caption quality. This paper explores the issue of hallucination in 3D object captioning, with a focus on Cap3D method, which renders 3D objects into 2D views for captioning using pre-trained models. We pinpoint a major challenge: certain rendered views of 3D objects are atypical, deviating from the training data of standard image captioning models and causing hallucinations. To tackle this, we present DiffuRank, a method that leverages a pre-trained text-to-3D model to assess the alignment between 3D objects and their 2D rendered views, where the view with high alignment closely represent the object's characteristics. By ranking all rendered views and feeding the top-ranked ones into GPT4-Vision, we enhance the accuracy and detail of captions, enabling the correction of 200k captions in the Cap3D dataset and extending it to 1 million captions across Objaverse and Objaverse-XL datasets. Additionally, we showcase the adaptability of DiffuRank by applying it to pre-trained text-to-image models for a Visual Question Answering task, where it outperforms the CLIP model.

Taming Stable Diffusion for Text to 360° Panorama Image Generation

Authors: Cheng Zhang, Qianyi Wu, Camilo Cruz Gambardella, Xiaoshui Huang, Dinh Phung, Wanli Ouyang, Jianfei Cai

Link: http://arxiv.org/abs/2404.07949v1open in new window

Abstract: Generative models, e.g., Stable Diffusion, have enabled the creation of photorealistic images from text prompts. Yet, the generation of 360-degree panorama images from text remains a challenge, particularly due to the dearth of paired text-panorama data and the domain gap between panorama and perspective images. In this paper, we introduce a novel dual-branch diffusion model named PanFusion to generate a 360-degree image from a text prompt. We leverage the stable diffusion model as one branch to provide prior knowledge in natural image generation and register it to another panorama branch for holistic image generation. We propose a unique cross-attention mechanism with projection awareness to minimize distortion during the collaborative denoising process. Our experiments validate that PanFusion surpasses existing methods and, thanks to its dual-branch structure, can integrate additional constraints like room layout for customized panorama outputs. Code is available at https://chengzhag.github.io/publication/panfusion.

An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization

Authors: Minshuo Chen, Song Mei, Jianqing Fan, Mengdi Wang

Link: http://arxiv.org/abs/2404.07771v1open in new window

Abstract: Diffusion models, a powerful and universal generative AI technology, have achieved tremendous success in computer vision, audio, reinforcement learning, and computational biology. In these applications, diffusion models provide flexible high-dimensional data modeling, and act as a sampler for generating new samples under active guidance towards task-desired properties. Despite the significant empirical success, theory of diffusion models is very limited, potentially slowing down principled methodological innovations for further harnessing and improving diffusion models. In this paper, we review emerging applications of diffusion models, understanding their sample generation under various controls. Next, we overview the existing theories of diffusion models, covering their statistical properties and sampling capabilities. We adopt a progressive routine, beginning with unconditional diffusion models and connecting to conditional counterparts. Further, we review a new avenue in high-dimensional structured optimization through conditional diffusion models, where searching for solutions is reformulated as a conditional sampling problem and solved by diffusion models. Lastly, we discuss future directions about diffusion models. The purpose of this paper is to provide a well-rounded theoretical exposure for stimulating forward-looking theories and methods of diffusion models.

Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification

Authors: Tuong Vy Nguyen, Alexander Glaser, Felix Biessmann

Link: http://arxiv.org/abs/2404.07754v1open in new window

Abstract: Novel deep-learning (DL) architectures have reached a level where they can generate digital media, including photorealistic images, that are difficult to distinguish from real data. These technologies have already been used to generate training data for Machine Learning (ML) models, and large text-to-image models like DALL-E 2, Imagen, and Stable Diffusion are achieving remarkable results in realistic high-resolution image generation. Given these developments, issues of data authentication in monitoring and verification deserve a careful and systematic analysis: How realistic are synthetic images? How easily can they be generated? How useful are they for ML researchers, and what is their potential for Open Science? In this work, we use novel DL models to explore how synthetic satellite images can be created using conditioning mechanisms. We investigate the challenges of synthetic satellite image generation and evaluate the results based on authenticity and state-of-the-art metrics. Furthermore, we investigate how synthetic data can alleviate the lack of data in the context of ML methods for remote-sensing. Finally we discuss implications of synthetic satellite imagery in the context of monitoring and verification.

CAT: Contrastive Adapter Training for Personalized Image Generation

Authors: Jae Wan Park, Sang Hyun Park, Jun Young Koh, Junha Lee, Min Song

Link: http://arxiv.org/abs/2404.07554v1open in new window

Abstract: The emergence of various adapters, including Low-Rank Adaptation (LoRA) applied from the field of natural language processing, has allowed diffusion models to personalize image generation at a low cost. However, due to the various challenges including limited datasets and shortage of regularization and computation resources, adapter training often results in unsatisfactory outcomes, leading to the corruption of the backbone model's prior knowledge. One of the well known phenomena is the loss of diversity in object generation, especially within the same class which leads to generating almost identical objects with minor variations. This poses challenges in generation capabilities. To solve this issue, we present Contrastive Adapter Training (CAT), a simple yet effective strategy to enhance adapter training through the application of CAT loss. Our approach facilitates the preservation of the base model's original knowledge when the model initiates adapters. Furthermore, we introduce the Knowledge Preservation Score (KPS) to evaluate CAT's ability to keep the former information. We qualitatively and quantitatively compare CAT's improvement. Finally, we mention the possibility of CAT in the aspects of multi-concept adapter and optimization.

2024-04-10

Object-Conditioned Energy-Based Attention Map Alignment in Text-to-Image Diffusion Models

Authors: Yasi Zhang, Peiyu Yu, Ying Nian Wu

Link: http://arxiv.org/abs/2404.07389v1open in new window

Abstract: Text-to-image diffusion models have shown great success in generating high-quality text-guided images. Yet, these models may still fail to semantically align generated images with the provided text prompts, leading to problems like incorrect attribute binding and/or catastrophic object neglect. Given the pervasive object-oriented structure underlying text prompts, we introduce a novel object-conditioned Energy-Based Attention Map Alignment (EBAMA) method to address the aforementioned problems. We show that an object-centric attribute binding loss naturally emerges by approximately maximizing the log-likelihood of a $z$-parameterized energy-based model with the help of the negative sampling technique. We further propose an object-centric intensity regularizer to prevent excessive shifts of objects attention towards their attributes. Extensive qualitative and quantitative experiments, including human evaluation, on several challenging benchmarks demonstrate the superior performance of our method over previous strong counterparts. With better aligned attention maps, our approach shows great promise in further enhancing the text-controlled image editing ability of diffusion models.

GoodDrag: Towards Good Practices for Drag Editing with Diffusion Models

Authors: Zewei Zhang, Huan Liu, Jun Chen, Xiangyu Xu

Link: http://arxiv.org/abs/2404.07206v1open in new window

Abstract: In this paper, we introduce GoodDrag, a novel approach to improve the stability and image quality of drag editing. Unlike existing methods that struggle with accumulated perturbations and often result in distortions, GoodDrag introduces an AlDD framework that alternates between drag and denoising operations within the diffusion process, effectively improving the fidelity of the result. We also propose an information-preserving motion supervision operation that maintains the original features of the starting point for precise manipulation and artifact reduction. In addition, we contribute to the benchmarking of drag editing by introducing a new dataset, Drag100, and developing dedicated quality assessment metrics, Dragging Accuracy Index and Gemini Score, utilizing Large Multimodal Models. Extensive experiments demonstrate that the proposed GoodDrag compares favorably against the state-of-the-art approaches both qualitatively and quantitatively. The project page is https://gooddrag.github.io.

RealmDreamer: Text-Driven 3D Scene Generation with Inpainting and Depth Diffusion

Authors: Jaidev Shriram, Alex Trevithick, Lingjie Liu, Ravi Ramamoorthi

Link: http://arxiv.org/abs/2404.07199v1open in new window

Abstract: We introduce RealmDreamer, a technique for generation of general forward-facing 3D scenes from text descriptions. Our technique optimizes a 3D Gaussian Splatting representation to match complex text prompts. We initialize these splats by utilizing the state-of-the-art text-to-image generators, lifting their samples into 3D, and computing the occlusion volume. We then optimize this representation across multiple views as a 3D inpainting task with image-conditional diffusion models. To learn correct geometric structure, we incorporate a depth diffusion model by conditioning on the samples from the inpainting model, giving rich geometric structure. Finally, we finetune the model using sharpened samples from image generators. Notably, our technique does not require video or multi-view data and can synthesize a variety of high-quality 3D scenes in different styles, consisting of multiple objects. Its generality additionally allows 3D synthesis from a single image.

InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models

Authors: Jiale Xu, Weihao Cheng, Yiming Gao, Xintao Wang, Shenghua Gao, Ying Shan

Link: http://arxiv.org/abs/2404.07191v2open in new window

Abstract: We present InstantMesh, a feed-forward framework for instant 3D mesh generation from a single image, featuring state-of-the-art generation quality and significant training scalability. By synergizing the strengths of an off-the-shelf multiview diffusion model and a sparse-view reconstruction model based on the LRM architecture, InstantMesh is able to create diverse 3D assets within 10 seconds. To enhance the training efficiency and exploit more geometric supervisions, e.g, depths and normals, we integrate a differentiable iso-surface extraction module into our framework and directly optimize on the mesh representation. Experimental results on public datasets demonstrate that InstantMesh significantly outperforms other latest image-to-3D baselines, both qualitatively and quantitatively. We release all the code, weights, and demo of InstantMesh, with the intention that it can make substantial contributions to the community of 3D generative AI and empower both researchers and content creators.

DreamScene360: Unconstrained Text-to-3D Scene Generation with Panoramic Gaussian Splatting

Authors: Shijie Zhou, Zhiwen Fan, Dejia Xu, Haoran Chang, Pradyumna Chari, Tejas Bharadwaj, Suya You, Zhangyang Wang, Achuta Kadambi

Link: http://arxiv.org/abs/2404.06903v1open in new window

Abstract: The increasing demand for virtual reality applications has highlighted the significance of crafting immersive 3D assets. We present a text-to-3D 360$^{\circ}$ scene generation pipeline that facilitates the creation of comprehensive 360$^{\circ}$ scenes for in-the-wild environments in a matter of minutes. Our approach utilizes the generative power of a 2D diffusion model and prompt self-refinement to create a high-quality and globally coherent panoramic image. This image acts as a preliminary "flat" (2D) scene representation. Subsequently, it is lifted into 3D Gaussians, employing splatting techniques to enable real-time exploration. To produce consistent 3D geometry, our pipeline constructs a spatially coherent structure by aligning the 2D monocular depth into a globally optimized point cloud. This point cloud serves as the initial state for the centroids of 3D Gaussians. In order to address invisible issues inherent in single-view inputs, we impose semantic and geometric constraints on both synthesized and input camera views as regularizations. These guide the optimization of Gaussians, aiding in the reconstruction of unseen regions. In summary, our method offers a globally consistent 3D scene within a 360$^{\circ}$ perspective, providing an enhanced immersive experience over existing techniques. Project website at: http://dreamscene360.github.io/

Urban Architect: Steerable 3D Urban Scene Generation with Layout Prior

Authors: Fan Lu, Kwan-Yee Lin, Yan Xu, Hongsheng Li, Guang Chen, Changjun Jiang

Link: http://arxiv.org/abs/2404.06780v1open in new window

Abstract: Text-to-3D generation has achieved remarkable success via large-scale text-to-image diffusion models. Nevertheless, there is no paradigm for scaling up the methodology to urban scale. Urban scenes, characterized by numerous elements, intricate arrangement relationships, and vast scale, present a formidable barrier to the interpretability of ambiguous textual descriptions for effective model optimization. In this work, we surmount the limitations by introducing a compositional 3D layout representation into text-to-3D paradigm, serving as an additional prior. It comprises a set of semantic primitives with simple geometric structures and explicit arrangement relationships, complementing textual descriptions and enabling steerable generation. Upon this, we propose two modifications -- (1) We introduce Layout-Guided Variational Score Distillation to address model optimization inadequacies. It conditions the score distillation sampling process with geometric and semantic constraints of 3D layouts. (2) To handle the unbounded nature of urban scenes, we represent 3D scene with a Scalable Hash Grid structure, incrementally adapting to the growing scale of urban scenes. Extensive experiments substantiate the capability of our framework to scale text-to-3D generation to large-scale urban scenes that cover over 1000m driving distance for the first time. We also present various scene editing demonstrations, showing the powers of steerable urban scene generation. Website: https://urbanarchitect.github.io.

DiffusionDialog: A Diffusion Model for Diverse Dialog Generation with Latent Space

Authors: Jianxiang Xiang, Zhenhua Liu, Haodong Liu, Yin Bai, Jia Cheng, Wenliang Chen

Link: http://arxiv.org/abs/2404.06760v1open in new window

Abstract: In real-life conversations, the content is diverse, and there exists the one-to-many problem that requires diverse generation. Previous studies attempted to introduce discrete or Gaussian-based continuous latent variables to address the one-to-many problem, but the diversity is limited. Recently, diffusion models have made breakthroughs in computer vision, and some attempts have been made in natural language processing. In this paper, we propose DiffusionDialog, a novel approach to enhance the diversity of dialogue generation with the help of diffusion model. In our approach, we introduce continuous latent variables into the diffusion model. The problem of using latent variables in the dialog task is how to build both an effective prior of the latent space and an inferring process to obtain the proper latent given the context. By combining the encoder and latent-based diffusion model, we encode the response's latent representation in a continuous space as the prior, instead of fixed Gaussian distribution or simply discrete ones. We then infer the latent by denoising step by step with the diffusion model. The experimental results show that our model greatly enhances the diversity of dialog responses while maintaining coherence. Furthermore, in further analysis, we find that our diffusion model achieves high inference efficiency, which is the main challenge of applying diffusion models in natural language processing.

Authors: Yiwei Lu, Matthew Y. R. Yang, Zuoqiu Liu, Gautam Kamath, Yaoliang Yu

Link: http://arxiv.org/abs/2404.06737v2open in new window

Abstract: Copyright infringement may occur when a generative model produces samples substantially similar to some copyrighted data that it had access to during the training phase. The notion of access usually refers to including copyrighted samples directly in the training dataset, which one may inspect to identify an infringement. We argue that such visual auditing largely overlooks a concealed copyright infringement, where one constructs a disguise that looks drastically different from the copyrighted sample yet still induces the effect of training Latent Diffusion Models on it. Such disguises only require indirect access to the copyrighted material and cannot be visually distinguished, thus easily circumventing the current auditing tools. In this paper, we provide a better understanding of such disguised copyright infringement by uncovering the disguises generation algorithm, the revelation of the disguises, and importantly, how to detect them to augment the existing toolbox. Additionally, we introduce a broader notion of acknowledgment for comprehending such indirect access.

SafeGen: Mitigating Unsafe Content Generation in Text-to-Image Models

Authors: Xinfeng Li, Yuchen Yang, Jiangyi Deng, Chen Yan, Yanjiao Chen, Xiaoyu Ji, Wenyuan Xu

Link: http://arxiv.org/abs/2404.06666v1open in new window

Abstract: Text-to-image (T2I) models, such as Stable Diffusion, have exhibited remarkable performance in generating high-quality images from text descriptions in recent years. However, text-to-image models may be tricked into generating not-safe-for-work (NSFW) content, particularly in sexual scenarios. Existing countermeasures mostly focus on filtering inappropriate inputs and outputs, or suppressing improper text embeddings, which can block explicit NSFW-related content (e.g., naked or sexy) but may still be vulnerable to adversarial prompts inputs that appear innocent but are ill-intended. In this paper, we present SafeGen, a framework to mitigate unsafe content generation by text-to-image models in a text-agnostic manner. The key idea is to eliminate unsafe visual representations from the model regardless of the text input. In this way, the text-to-image model is resistant to adversarial prompts since unsafe visual representations are obstructed from within. Extensive experiments conducted on four datasets demonstrate SafeGen's effectiveness in mitigating unsafe content generation while preserving the high-fidelity of benign images. SafeGen outperforms eight state-of-the-art baseline methods and achieves 99.1% sexual content removal performance. Furthermore, our constructed benchmark of adversarial prompts provides a basis for future development and evaluation of anti-NSFW-generation methods.

2024-04-09

Magic-Boost: Boost 3D Generation with Mutli-View Conditioned Diffusion

Authors: Fan Yang, Jianfeng Zhang, Yichun Shi, Bowen Chen, Chenxu Zhang, Huichao Zhang, Xiaofeng Yang, Jiashi Feng, Guosheng Lin

Link: http://arxiv.org/abs/2404.06429v1open in new window

Abstract: Benefiting from the rapid development of 2D diffusion models, 3D content creation has made significant progress recently. One promising solution involves the fine-tuning of pre-trained 2D diffusion models to harness their capacity for producing multi-view images, which are then lifted into accurate 3D models via methods like fast-NeRFs or large reconstruction models. However, as inconsistency still exists and limited generated resolution, the generation results of such methods still lack intricate textures and complex geometries. To solve this problem, we propose Magic-Boost, a multi-view conditioned diffusion model that significantly refines coarse generative results through a brief period of SDS optimization ($\sim15$min). Compared to the previous text or single image based diffusion models, Magic-Boost exhibits a robust capability to generate images with high consistency from pseudo synthesized multi-view images. It provides precise SDS guidance that well aligns with the identity of the input images, enriching the local detail in both geometry and texture of the initial generative results. Extensive experiments show Magic-Boost greatly enhances the coarse inputs and generates high-quality 3D assets with rich geometric and textural details. (Project Page: https://magic-research.github.io/magic-boost/)

DiffHarmony: Latent Diffusion Model Meets Image Harmonization

Authors: Pengfei Zhou, Fangxiang Feng, Xiaojie Wang

Link: http://arxiv.org/abs/2404.06139v1open in new window

Abstract: Image harmonization, which involves adjusting the foreground of a composite image to attain a unified visual consistency with the background, can be conceptualized as an image-to-image translation task. Diffusion models have recently promoted the rapid development of image-to-image translation tasks . However, training diffusion models from scratch is computationally intensive. Fine-tuning pre-trained latent diffusion models entails dealing with the reconstruction error induced by the image compression autoencoder, making it unsuitable for image generation tasks that involve pixel-level evaluation metrics. To deal with these issues, in this paper, we first adapt a pre-trained latent diffusion model to the image harmonization task to generate the harmonious but potentially blurry initial images. Then we implement two strategies: utilizing higher-resolution images during inference and incorporating an additional refinement stage, to further enhance the clarity of the initially harmonized images. Extensive experiments on iHarmony4 datasets demonstrate the superiority of our proposed method. The code and model will be made publicly available at https://github.com/nicecv/DiffHarmony .

Hash3D: Training-free Acceleration for 3D Generation

Authors: Xingyi Yang, Xinchao Wang

Link: http://arxiv.org/abs/2404.06091v1open in new window

Abstract: The evolution of 3D generative modeling has been notably propelled by the adoption of 2D diffusion models. Despite this progress, the cumbersome optimization process per se presents a critical hurdle to efficiency. In this paper, we introduce Hash3D, a universal acceleration for 3D generation without model training. Central to Hash3D is the insight that feature-map redundancy is prevalent in images rendered from camera positions and diffusion time-steps in close proximity. By effectively hashing and reusing these feature maps across neighboring timesteps and camera angles, Hash3D substantially prevents redundant calculations, thus accelerating the diffusion model's inference in 3D generation tasks. We achieve this through an adaptive grid-based hashing. Surprisingly, this feature-sharing mechanism not only speed up the generation but also enhances the smoothness and view consistency of the synthesized 3D objects. Our experiments covering 5 text-to-3D and 3 image-to-3D models, demonstrate Hash3D's versatility to speed up optimization, enhancing efficiency by 1.3 to 4 times. Additionally, Hash3D's integration with 3D Gaussian splatting largely speeds up 3D model creation, reducing text-to-3D processing to about 10 minutes and image-to-3D conversion to roughly 30 seconds. The project page is at https://adamdad.github.io/hash3D/.

Tackling Structural Hallucination in Image Translation with Local Diffusion

Authors: Seunghoi Kim, Chen Jin, Tom Diethe, Matteo Figini, Henry F. J. Tregidgo, Asher Mullokandov, Philip Teare, Daniel C. Alexander

Link: http://arxiv.org/abs/2404.05980v2open in new window

Abstract: Recent developments in diffusion models have advanced conditioned image generation, yet they struggle with reconstructing out-of-distribution (OOD) images, such as unseen tumors in medical images, causing image hallucination'' and risking misdiagnosis. We hypothesize such hallucinations result from local OOD regions in the conditional images. We verify that partitioning the OOD region and conducting separate image generations alleviates hallucinations in several applications. From this, we propose a training-free diffusion framework that reduces hallucination with multiple Local Diffusion processes. Our approach involves OOD estimation followed by two modules: a branching'' module generates locally both within and outside OOD regions, and a ``fusion'' module integrates these predictions into one. Our evaluation shows our method mitigates hallucination over baseline models quantitatively and qualitatively, reducing misdiagnosis by 40% and 25% in the real-world medical and natural image datasets, respectively. It also demonstrates compatibility with various pre-trained diffusion models.

2024-04-08

MoMA: Multimodal LLM Adapter for Fast Personalized Image Generation

Authors: Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan, Ahmed Elgammal, Xiao Yang

Link: http://arxiv.org/abs/2404.05674v1open in new window

Abstract: In this paper, we present MoMA: an open-vocabulary, training-free personalized image model that boasts flexible zero-shot capabilities. As foundational text-to-image models rapidly evolve, the demand for robust image-to-image translation grows. Addressing this need, MoMA specializes in subject-driven personalized image generation. Utilizing an open-source, Multimodal Large Language Model (MLLM), we train MoMA to serve a dual role as both a feature extractor and a generator. This approach effectively synergizes reference image and text prompt information to produce valuable image features, facilitating an image diffusion model. To better leverage the generated features, we further introduce a novel self-attention shortcut method that efficiently transfers image features to an image diffusion model, improving the resemblance of the target object in generated images. Remarkably, as a tuning-free plug-and-play module, our model requires only a single reference image and outperforms existing methods in generating images with high detail fidelity, enhanced identity-preservation and prompt faithfulness. Our work is open-source, thereby providing universal access to these advancements.

YaART: Yet Another ART Rendering Technology

Authors: Sergey Kastryulin, Artem Konev, Alexander Shishenya, Eugene Lyapustin, Artem Khurshudov, Alexander Tselousov, Nikita Vinokurov, Denis Kuznedelev, Alexander Markovich, Grigoriy Livshits, Alexey Kirillov, Anastasiia Tabisheva, Liubov Chubarova, Marina Kaminskaia, Alexander Ustyuzhanin, Artemii Shvetsov, Daniil Shlenskii, Valerii Startsev, Dmitrii Kornilov, Mikhail Romanov, Artem Babenko, Sergei Ovcharenko, Valentin Khrulkov

Link: http://arxiv.org/abs/2404.05666v1open in new window

Abstract: In the rapidly progressing field of generative models, the development of efficient and high-fidelity text-to-image diffusion systems represents a significant frontier. This study introduces YaART, a novel production-grade text-to-image cascaded diffusion model aligned to human preferences using Reinforcement Learning from Human Feedback (RLHF). During the development of YaART, we especially focus on the choices of the model and training dataset sizes, the aspects that were not systematically investigated for text-to-image cascaded diffusion models before. In particular, we comprehensively analyze how these choices affect both the efficiency of the training process and the quality of the generated images, which are highly important in practice. Furthermore, we demonstrate that models trained on smaller datasets of higher-quality images can successfully compete with those trained on larger datasets, establishing a more efficient scenario of diffusion models training. From the quality perspective, YaART is consistently preferred by users over many existing state-of-the-art models.

Learning a Category-level Object Pose Estimator without Pose Annotations

Authors: Fengrui Tian, Yaoyao Liu, Adam Kortylewski, Yueqi Duan, Shaoyi Du, Alan Yuille, Angtian Wang

Link: http://arxiv.org/abs/2404.05626v1open in new window

Abstract: 3D object pose estimation is a challenging task. Previous works always require thousands of object images with annotated poses for learning the 3D pose correspondence, which is laborious and time-consuming for labeling. In this paper, we propose to learn a category-level 3D object pose estimator without pose annotations. Instead of using manually annotated images, we leverage diffusion models (e.g., Zero-1-to-3) to generate a set of images under controlled pose differences and propose to learn our object pose estimator with those images. Directly using the original diffusion model leads to images with noisy poses and artifacts. To tackle this issue, firstly, we exploit an image encoder, which is learned from a specially designed contrastive pose learning, to filter the unreasonable details and extract image feature maps. Additionally, we propose a novel learning strategy that allows the model to learn object poses from those generated image sets without knowing the alignment of their canonical poses. Experimental results show that our method has the capability of category-level object pose estimation from a single shot setting (as pose definition), while significantly outperforming other state-of-the-art methods on the few-shot category-level object pose estimation benchmarks.

A Training-Free Plug-and-Play Watermark Framework for Stable Diffusion

Authors: Guokai Zhang, Lanjun Wang, Yuting Su, An-An Liu

Link: http://arxiv.org/abs/2404.05607v1open in new window

Abstract: Nowadays, the family of Stable Diffusion (SD) models has gained prominence for its high quality outputs and scalability. This has also raised security concerns on social media, as malicious users can create and disseminate harmful content. Existing approaches involve training components or entire SDs to embed a watermark in generated images for traceability and responsibility attribution. However, in the era of AI-generated content (AIGC), the rapid iteration of SDs renders retraining with watermark models costly. To address this, we propose a training-free plug-and-play watermark framework for SDs. Without modifying any components of SDs, we embed diverse watermarks in the latent space, adapting to the denoising process. Our experimental findings reveal that our method effectively harmonizes image quality and watermark invisibility. Furthermore, it performs robustly under various attacks. We also have validated that our method is generalized to multiple versions of SDs, even without retraining the watermark model.